File size: 4,455 Bytes
ee5a411
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Head_and_Neck_Cancer"
cohort = "GSE151181"

# Input paths
in_trait_dir = "../DATA/GEO/Head_and_Neck_Cancer"
in_cohort_dir = "../DATA/GEO/Head_and_Neck_Cancer/GSE151181"

# Output paths
out_data_file = "./output/preprocess/3/Head_and_Neck_Cancer/GSE151181.csv"
out_gene_data_file = "./output/preprocess/3/Head_and_Neck_Cancer/gene_data/GSE151181.csv"
out_clinical_data_file = "./output/preprocess/3/Head_and_Neck_Cancer/clinical_data/GSE151181.csv"
json_path = "./output/preprocess/3/Head_and_Neck_Cancer/cohort_info.json"

# Get relevant file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Get dictionary of unique values per row in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background info
print("Background Information:")
print("-" * 50)
print(background_info)
print("\n")

# Print clinical data unique values
print("Sample Characteristics:")
print("-" * 50)
for row, values in unique_values_dict.items():
    print(f"{row}:")
    print(f"  {values}")
    print()
# 1. Gene Expression Data Availability
# Based on background info, this is a gene + miRNA expression study
is_gene_available = True

# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
# Trait row: RAI response status is recorded at row 4, binary trait
trait_row = 4

# Age/Gender data not explicitly available in sample characteristics
age_row = None 
gender_row = None

# 2.2 Data Type Conversion Functions
def convert_trait(x):
    """Convert RAI response status to binary
    Refractory (resistant) = 1, Avid (responsive) = 0"""
    if not isinstance(x, str):
        return None
    x = x.split(": ")[-1].strip().lower()
    if x == "refractory":
        return 1
    elif x == "avid":
        return 0
    return None

def convert_age(x):
    """Placeholder since age not available"""
    return None

def convert_gender(x):
    """Placeholder since gender not available"""
    return None

# 3. Save Initial Metadata
is_usable = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=trait_row is not None
)

# 4. Clinical Feature Extraction
if trait_row is not None:
    clinical_features = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview extracted features
    preview = preview_df(clinical_features)
    print("Preview of extracted clinical features:")
    print(preview)
    
    # Save clinical data
    clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 probe IDs
print("First 20 probe IDs:")
print(genetic_data.index[:20])
probe_ids = ['23064070', '23064071', '23064072', '23064073', '23064074']

# These are Agilent probe IDs that need to be mapped to human gene symbols
requires_gene_mapping = True
# List all files in the cohort directory
files = os.listdir(in_cohort_dir)
print("All files in directory:")
for f in files:
    print(f)
print()

# Since this is a SuperSeries (as stated in background info), look for subseries files
subseries_files = [f for f in files if 'series' in f.lower()]
gene_annotation = None

for file in subseries_files:
    file_path = os.path.join(in_cohort_dir, file)
    temp_annot = get_gene_annotation(file_path)
    
    # Check if this annotation contains gene data (not miRNA)
    if 'GENE_SYMBOL' in temp_annot.columns and \
       any(not str(x).startswith('hsa-miR') for x in temp_annot['GENE_SYMBOL'].dropna()):
        gene_annotation = temp_annot
        break

if gene_annotation is not None:
    # Preview column names and first 20 values
    preview_dict = preview_df(gene_annotation, n=20)
    print("Column names and preview values:")
    for col, values in preview_dict.items():
        print(f"\n{col}:")
        print(values)
else:
    print("No gene annotation data found in any file. This dataset may only contain miRNA data.")