File size: 5,641 Bytes
ee5a411
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Head_and_Neck_Cancer"
cohort = "GSE201777"

# Input paths
in_trait_dir = "../DATA/GEO/Head_and_Neck_Cancer"
in_cohort_dir = "../DATA/GEO/Head_and_Neck_Cancer/GSE201777"

# Output paths
out_data_file = "./output/preprocess/3/Head_and_Neck_Cancer/GSE201777.csv"
out_gene_data_file = "./output/preprocess/3/Head_and_Neck_Cancer/gene_data/GSE201777.csv"
out_clinical_data_file = "./output/preprocess/3/Head_and_Neck_Cancer/clinical_data/GSE201777.csv"
json_path = "./output/preprocess/3/Head_and_Neck_Cancer/cohort_info.json"

# Get relevant file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Get dictionary of unique values per row in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background info
print("Background Information:")
print("-" * 50)
print(background_info)
print("\n")

# Print clinical data unique values
print("Sample Characteristics:")
print("-" * 50)
for row, values in unique_values_dict.items():
    print(f"{row}:")
    print(f"  {values}")
    print()
# 1. Gene Expression Data Availability
# Yes, this dataset contains gene expression data as it studies differentially expressed genes 
# in laryngeal cancer tissue samples
is_gene_available = True

# 2. Variable Availability and Data Row Identification
# trait (lymph node metastasis status) is available in row 2
trait_row = 2

# age is not provided in sample characteristics
age_row = None 

# gender is not provided in sample characteristics
gender_row = None

# Conversion functions
def convert_trait(value: str) -> Optional[int]:
    """Convert lymph node metastasis status to binary
    positive -> 1
    negative -> 0
    """
    if not value or ':' not in value:
        return None
    value = value.split(':')[1].strip().lower()
    if 'positive' in value or 'positiive' in value:
        return 1
    elif 'negative' in value:
        return 0
    return None

def convert_age(value: str) -> Optional[float]:
    """Convert age to float"""
    return None  # Not used since age data not available

def convert_gender(value: str) -> Optional[int]:
    """Convert gender to binary"""
    return None  # Not used since gender data not available

# 3. Save metadata with initial filtering
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, 
                              cohort=cohort,
                              info_path=json_path,
                              is_gene_available=is_gene_available,
                              is_trait_available=is_trait_available)

# 4. Extract clinical features if trait data is available
if trait_row is not None:
    clinical_df = geo_select_clinical_features(clinical_data, trait, trait_row, convert_trait)
    preview_df(clinical_df)  # Preview the extracted features
    clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 probe IDs
print("First 20 probe IDs:")
print(genetic_data.index[:20])
# These appear to be probe set IDs from Affymetrix microarray
# They need to be mapped to gene symbols for standardization and interpretability
requires_gene_mapping = True
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)

# Preview column names and first 20 values
preview_dict = preview_df(gene_annotation, n=20)
print("Column names and preview values:")
for col, values in preview_dict.items():
    print(f"\n{col}:")
    print(values)
# 1. Identify columns containing probe IDs and gene symbols
# From previewing the annotation data, 'ID' contains probe IDs and 'Gene Symbol' contains gene symbols
prob_col = 'ID'
gene_col = 'Gene Symbol'

# 2. Get gene mapping dataframe
mapping_data = get_gene_mapping(gene_annotation, prob_col, gene_col)

# 3. Apply mapping to convert probe-level data to gene expression data 
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Preview the first few rows and columns
print("\nFirst few rows and columns of mapped gene expression data:")
print(gene_data.iloc[:5, :5])
# 1. Normalize gene symbols and save normalized gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)

# Read the processed clinical data file 
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)

# Link clinical and genetic data using the normalized gene data
linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)

# Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)

# Detect bias in trait and demographic features, remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# Validate data quality and save cohort info
note = "Gene expression data from glucocorticoid sensitivity study."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note=note
)

# Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)
else:
    print(f"Dataset {cohort} did not pass quality validation and will not be saved.")