File size: 6,037 Bytes
ee5a411
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Head_and_Neck_Cancer"
cohort = "GSE244580"

# Input paths
in_trait_dir = "../DATA/GEO/Head_and_Neck_Cancer"
in_cohort_dir = "../DATA/GEO/Head_and_Neck_Cancer/GSE244580"

# Output paths
out_data_file = "./output/preprocess/3/Head_and_Neck_Cancer/GSE244580.csv"
out_gene_data_file = "./output/preprocess/3/Head_and_Neck_Cancer/gene_data/GSE244580.csv"
out_clinical_data_file = "./output/preprocess/3/Head_and_Neck_Cancer/clinical_data/GSE244580.csv"
json_path = "./output/preprocess/3/Head_and_Neck_Cancer/cohort_info.json"

# Get relevant file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Get dictionary of unique values per row in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background info
print("Background Information:")
print("-" * 50)
print(background_info)
print("\n")

# Print clinical data unique values
print("Sample Characteristics:")
print("-" * 50)
for row, values in unique_values_dict.items():
    print(f"{row}:")
    print(f"  {values}")
    print()
# 1. Gene Expression Data Availability 
# Based on background information, this dataset contains gene expression data from microarray analysis
is_gene_available = True

# 2.1 Data Availability
# From sample characteristics, we can find trait information (disease state) in row 0
# Age and gender information are not available
trait_row = 0
age_row = None  
gender_row = None

# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
    """Convert disease state to binary: 
    0 for chronic tonsillitis (control)
    1 for peritumoral tissue/lymph node (cancer-related)"""
    if not value or ':' not in value:
        return None
    value = value.split(':')[1].strip().lower()
    if 'chronic tonsillitis' in value:
        return 0
    elif 'peritumoral' in value or 'lymph node' in value:
        return 1
    return None

# Age conversion function not needed since age data unavailable
convert_age = None

# Gender conversion function not needed since gender data unavailable  
convert_gender = None

# 3. Save initial metadata
initial_validation = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)

# 4. Extract clinical features since trait_row is not None
clinical_df = geo_select_clinical_features(
    clinical_df=clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age,
    gender_row=gender_row,
    convert_gender=convert_gender
)

# Preview the processed clinical data
print("Preview of processed clinical data:")
print(preview_df(clinical_df))

# Save clinical data
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 probe IDs
print("First 20 probe IDs:")
print(genetic_data.index[:20])
# The identifiers appear to be probe IDs from a microarray platform rather than human gene symbols
# They are numeric identifiers in a specific format (8 digits starting with 1665)
# These will need to be mapped to standard gene symbols for analysis
requires_gene_mapping = True
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)

# Preview column names and first few values
preview_dict = preview_df(gene_annotation)
print("Column names and preview values:")
for col, values in preview_dict.items():
    print(f"\n{col}:")
    print(values)
# From examining Step 5's output, we see probe IDs in 'ID' column 
# and gene identifiers in 'GB_ACC' column from gene_annotation
gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GB_ACC')

# Apply gene mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_data, gene_mapping)

# Print row and column counts to verify data dimensions
print("\nGene expression data shape after mapping:")
print(f"Number of genes: {len(gene_data.index)}")
print(f"Number of samples: {len(gene_data.columns)}")

# Preview the mapped gene data
print("\nPreview of mapped gene expression data:")
print(gene_data.head())

# Save gene expression data
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# Since gene mapping failed, we need to go back and check the gene annotation columns
print("\nAvailable columns in gene_annotation:")
for col in gene_annotation.columns:
    print(f"{col}:")
    print(gene_annotation[col].head())
    print()

# Get gene mapping using SPOT_ID which appears to contain gene location info
gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='SPOT_ID')

# Apply gene mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_data, gene_mapping)

# Normalize gene symbols and save normalized gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)

# Read the processed clinical data file
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)

# Since gene mapping failed (no genes extracted), we should not proceed
is_usable = validate_and_save_cohort_info(
    is_final=False,  # Changed to False since processing failed 
    cohort=cohort,
    info_path=json_path,
    is_gene_available=False,  # Changed to False since mapping failed
    is_trait_available=True,
    note="Gene mapping failed - proper gene symbols not available in annotation data"
)

print(f"Dataset {cohort} preprocessing failed due to inadequate gene annotation data.")