File size: 6,037 Bytes
ee5a411 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Head_and_Neck_Cancer"
cohort = "GSE244580"
# Input paths
in_trait_dir = "../DATA/GEO/Head_and_Neck_Cancer"
in_cohort_dir = "../DATA/GEO/Head_and_Neck_Cancer/GSE244580"
# Output paths
out_data_file = "./output/preprocess/3/Head_and_Neck_Cancer/GSE244580.csv"
out_gene_data_file = "./output/preprocess/3/Head_and_Neck_Cancer/gene_data/GSE244580.csv"
out_clinical_data_file = "./output/preprocess/3/Head_and_Neck_Cancer/clinical_data/GSE244580.csv"
json_path = "./output/preprocess/3/Head_and_Neck_Cancer/cohort_info.json"
# Get relevant file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Get dictionary of unique values per row in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("Background Information:")
print("-" * 50)
print(background_info)
print("\n")
# Print clinical data unique values
print("Sample Characteristics:")
print("-" * 50)
for row, values in unique_values_dict.items():
print(f"{row}:")
print(f" {values}")
print()
# 1. Gene Expression Data Availability
# Based on background information, this dataset contains gene expression data from microarray analysis
is_gene_available = True
# 2.1 Data Availability
# From sample characteristics, we can find trait information (disease state) in row 0
# Age and gender information are not available
trait_row = 0
age_row = None
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
"""Convert disease state to binary:
0 for chronic tonsillitis (control)
1 for peritumoral tissue/lymph node (cancer-related)"""
if not value or ':' not in value:
return None
value = value.split(':')[1].strip().lower()
if 'chronic tonsillitis' in value:
return 0
elif 'peritumoral' in value or 'lymph node' in value:
return 1
return None
# Age conversion function not needed since age data unavailable
convert_age = None
# Gender conversion function not needed since gender data unavailable
convert_gender = None
# 3. Save initial metadata
initial_validation = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# 4. Extract clinical features since trait_row is not None
clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the processed clinical data
print("Preview of processed clinical data:")
print(preview_df(clinical_df))
# Save clinical data
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 probe IDs
print("First 20 probe IDs:")
print(genetic_data.index[:20])
# The identifiers appear to be probe IDs from a microarray platform rather than human gene symbols
# They are numeric identifiers in a specific format (8 digits starting with 1665)
# These will need to be mapped to standard gene symbols for analysis
requires_gene_mapping = True
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)
# Preview column names and first few values
preview_dict = preview_df(gene_annotation)
print("Column names and preview values:")
for col, values in preview_dict.items():
print(f"\n{col}:")
print(values)
# From examining Step 5's output, we see probe IDs in 'ID' column
# and gene identifiers in 'GB_ACC' column from gene_annotation
gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GB_ACC')
# Apply gene mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_data, gene_mapping)
# Print row and column counts to verify data dimensions
print("\nGene expression data shape after mapping:")
print(f"Number of genes: {len(gene_data.index)}")
print(f"Number of samples: {len(gene_data.columns)}")
# Preview the mapped gene data
print("\nPreview of mapped gene expression data:")
print(gene_data.head())
# Save gene expression data
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# Since gene mapping failed, we need to go back and check the gene annotation columns
print("\nAvailable columns in gene_annotation:")
for col in gene_annotation.columns:
print(f"{col}:")
print(gene_annotation[col].head())
print()
# Get gene mapping using SPOT_ID which appears to contain gene location info
gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='SPOT_ID')
# Apply gene mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_data, gene_mapping)
# Normalize gene symbols and save normalized gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)
# Read the processed clinical data file
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# Since gene mapping failed (no genes extracted), we should not proceed
is_usable = validate_and_save_cohort_info(
is_final=False, # Changed to False since processing failed
cohort=cohort,
info_path=json_path,
is_gene_available=False, # Changed to False since mapping failed
is_trait_available=True,
note="Gene mapping failed - proper gene symbols not available in annotation data"
)
print(f"Dataset {cohort} preprocessing failed due to inadequate gene annotation data.") |