File size: 6,332 Bytes
ee5a411 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Heart_rate"
cohort = "GSE117070"
# Input paths
in_trait_dir = "../DATA/GEO/Heart_rate"
in_cohort_dir = "../DATA/GEO/Heart_rate/GSE117070"
# Output paths
out_data_file = "./output/preprocess/3/Heart_rate/GSE117070.csv"
out_gene_data_file = "./output/preprocess/3/Heart_rate/gene_data/GSE117070.csv"
out_clinical_data_file = "./output/preprocess/3/Heart_rate/clinical_data/GSE117070.csv"
json_path = "./output/preprocess/3/Heart_rate/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Get unique values for each clinical feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# Get gene expression data from matrix file
gene_data = get_genetic_data(matrix_file_path)
is_gene_available = len(gene_data.columns) > 1
is_trait_available = False # Since we found no heart rate measurements in step 1
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data together
# Since trait data is not available, we have no clinical data to link with
clinical_data = pd.DataFrame()
if not clinical_data.empty:
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
else:
linked_data = pd.DataFrame()
# 3. Handle missing values if we have linked data
if not linked_data.empty and trait in linked_data.columns:
linked_data = handle_missing_values(linked_data, trait)
# 4. Judge whether features are biased and remove biased demographic features
is_biased = True # No trait data means it's biased by default
if not linked_data.empty and trait in linked_data.columns:
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and save metadata
note = "This dataset lacks heart rate measurements. The study focused on gene expression changes in PBMCs before and after physical activity, but did not include heart rate as a measured variable."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available,
is_biased=is_biased,
df=linked_data,
note=note
)
# 6. Save the linked data only if it's usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)
# Extract gene expression data from the matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Print information about the data structure
print("First few rows of the genetic data:")
print(genetic_data.head())
print("\nShape of genetic data:", genetic_data.shape)
print("\nColumn names:", genetic_data.columns.tolist())
# Review the gene identifiers in the genetic data
# The IDs shown (e.g. 1007_s_at, 1053_at) appear to be probe IDs from an Affymetrix microarray platform
# These are not human gene symbols and will need to be mapped to gene symbols
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_file_path)
# Display information about the annotation data
print("Column names:")
print(gene_metadata.columns.tolist())
print("\nPreview of first few rows:")
print(json.dumps(preview_df(gene_metadata), indent=2))
# Get gene mapping from annotation data
# 'ID' column matches probe IDs in expression data, 'Gene Symbol' contains gene symbols
mapping_data = get_gene_mapping(gene_metadata, 'ID', 'Gene Symbol')
# Apply gene mapping to convert probe expression to gene expression
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Print information about the mapping results
print("Shape of probe-level data:", genetic_data.shape)
print("Shape of gene-level data:", gene_data.shape)
print("\nPreview of mapped gene expression data:")
print(gene_data.head())
# Get probe-level data from previous step
genetic_data = get_genetic_data(matrix_file_path)
# Get mapping data from previous step
mapping_data = get_gene_mapping(gene_metadata, 'ID', 'Gene Symbol')
# First apply gene mapping to convert probe data to gene data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Then normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# Check data availability
is_gene_available = len(gene_data.columns) > 1
is_trait_available = False # Since we found no heart rate measurements in step 1
# Link clinical and genetic data together
# Since trait data is not available, we have no clinical data to link with
clinical_data = pd.DataFrame()
if not clinical_data.empty:
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
else:
linked_data = pd.DataFrame()
# Handle missing values if we have linked data
if not linked_data.empty and trait in linked_data.columns:
linked_data = handle_missing_values(linked_data, trait)
# Judge whether features are biased and remove biased demographic features
is_biased = True # No trait data means it's biased by default
if not linked_data.empty and trait in linked_data.columns:
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# Final validation and save metadata
note = "This dataset lacks heart rate measurements. The study focused on gene expression changes before and after physical activity, but did not include heart rate as a measured variable."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available,
is_biased=is_biased,
df=linked_data,
note=note
)
# Save the linked data only if it's usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |