File size: 5,337 Bytes
54d4d57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Huntingtons_Disease"
cohort = "GSE135589"

# Input paths
in_trait_dir = "../DATA/GEO/Huntingtons_Disease"
in_cohort_dir = "../DATA/GEO/Huntingtons_Disease/GSE135589"

# Output paths
out_data_file = "./output/preprocess/3/Huntingtons_Disease/GSE135589.csv"
out_gene_data_file = "./output/preprocess/3/Huntingtons_Disease/gene_data/GSE135589.csv"
out_clinical_data_file = "./output/preprocess/3/Huntingtons_Disease/clinical_data/GSE135589.csv"
json_path = "./output/preprocess/3/Huntingtons_Disease/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Get unique values for each clinical feature 
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# From the background information, we can see this is a study of gene expression in blood
is_gene_available = True

# 2. Data Availability and Type Conversion
# 2.1 Row identifiers
trait_row = 4  # "disease stage" contains HD status
age_row = 2    # "age at year 1" contains age information  
gender_row = 1  # "Sex" contains gender information

# 2.2 Data type conversion functions
def convert_trait(value: str) -> int:
    """Convert disease stage to binary (0: control, 1: HD-related)"""
    if not value or ':' not in value:
        return None
    stage = value.split(':')[1].strip().lower()
    if 'control' in stage:
        return 0
    elif any(x in stage for x in ['prehd', 'zhd']):
        return 1
    return None

def convert_age(value: str) -> float:
    """Convert age string to float"""
    if not value or ':' not in value:
        return None
    try:
        return float(value.split(':')[1].strip())
    except:
        return None

def convert_gender(value: str) -> int:
    """Convert gender to binary (0: female, 1: male)"""
    if not value or ':' not in value:
        return None
    gender = value.split(':')[1].strip().lower()
    if 'female' in gender:
        return 0
    elif 'male' in gender:
        return 1
    return None

# 3. Save Metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=trait_row is not None
)

# 4. Clinical Feature Extraction
if trait_row is not None:
    selected_clinical = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the data
    preview = preview_df(selected_clinical)
    
    # Save to CSV
    selected_clinical.to_csv(out_clinical_data_file)
# Extract gene expression data from the matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 row IDs
print("First 20 row IDs:")
print(genetic_data.index[:20].tolist())
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_file_path)

# Display information about the annotation data
print("Column names:")
print(gene_metadata.columns.tolist())
print("\nPreview of first few rows:")
print(json.dumps(preview_df(gene_metadata), indent=2))
# Get mapping between probe IDs and gene symbols
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene Symbol')

# Apply the gene mapping to convert probe-level data to gene expression data 
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Preview first few rows of gene expression data
print("Preview of gene expression data:")
print(preview_df(gene_data))
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# Get clinical features 
clinical_features = geo_select_clinical_features(
    clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    gender_row=gender_row,
    convert_gender=convert_gender
)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Judge whether features are biased and remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and save metadata
note = "Dataset contains gene expression data from human embryonic stem cells and their neural stem cell progeny, comparing HD mutation carriers with wild type controls"
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note=note
)

# 6. Save the linked data only if it's usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)