File size: 5,106 Bytes
54d4d57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Huntingtons_Disease"
cohort = "GSE34201"

# Input paths
in_trait_dir = "../DATA/GEO/Huntingtons_Disease"
in_cohort_dir = "../DATA/GEO/Huntingtons_Disease/GSE34201"

# Output paths
out_data_file = "./output/preprocess/3/Huntingtons_Disease/GSE34201.csv"
out_gene_data_file = "./output/preprocess/3/Huntingtons_Disease/gene_data/GSE34201.csv"
out_clinical_data_file = "./output/preprocess/3/Huntingtons_Disease/clinical_data/GSE34201.csv"
json_path = "./output/preprocess/3/Huntingtons_Disease/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Get unique values for each clinical feature 
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# Gene expression availability check
is_gene_available = True  # Based on Series_summary, this is mRNA expression data

# Variable availability check and data type conversion
trait_row = 1  # "hd genotype" contains HD status
gender_row = 3  # "gender" contains gender information
age_row = None  # Age information not available

# Data type conversion functions
def convert_trait(value: str) -> int:
    """Convert HD status to binary: 1 for HD, 0 for wild type"""
    if not value or ':' not in value:
        return None
    value = value.split(':')[1].strip().lower()
    if 'hd' in value:
        return 1
    elif 'wild type' in value:
        return 0
    return None

def convert_gender(value: str) -> int:
    """Convert gender to binary: 1 for male, 0 for female"""
    if not value or ':' not in value:
        return None
    value = value.split(':')[1].strip().lower()
    if 'female' in value:
        return 0
    elif 'male' in value:
        return 1
    return None

# Save metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)

# Extract clinical features
clinical_df = geo_select_clinical_features(
    clinical_df=clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    gender_row=gender_row,
    convert_gender=convert_gender
)

# Preview the processed clinical data
print(preview_df(clinical_df))

# Save clinical data
clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from the matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 row IDs
print("First 20 row IDs:")
print(genetic_data.index[:20].tolist())
# These are Illumina array probe IDs ('ILMN_' prefix), not gene symbols
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_file_path)

# Display information about the annotation data
print("Column names:")
print(gene_metadata.columns.tolist())
print("\nPreview of first few rows:")
print(json.dumps(preview_df(gene_metadata), indent=2))
# Identify the correct columns from gene annotation data
# 'ID' column in gene_metadata matches the probe identifiers (ILMN_*) in genetic_data
# 'Symbol' column contains the corresponding gene symbols
mapping_data = get_gene_mapping(gene_metadata, 'ID', 'Symbol')

# Apply mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Preview the first few genes
print("\nFirst 20 genes in mapped data:")
print(gene_data.index[:20].tolist())

# Save gene data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# Get clinical features 
clinical_features = geo_select_clinical_features(
    clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    gender_row=gender_row,
    convert_gender=convert_gender
)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Judge whether features are biased and remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and save metadata
note = "Dataset contains gene expression data from human embryonic stem cells and their neural stem cell progeny, comparing HD mutation carriers with wild type controls"
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note=note
)

# 6. Save the linked data only if it's usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)