File size: 5,396 Bytes
54d4d57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Huntingtons_Disease"
cohort = "GSE34721"

# Input paths
in_trait_dir = "../DATA/GEO/Huntingtons_Disease"
in_cohort_dir = "../DATA/GEO/Huntingtons_Disease/GSE34721"

# Output paths
out_data_file = "./output/preprocess/3/Huntingtons_Disease/GSE34721.csv"
out_gene_data_file = "./output/preprocess/3/Huntingtons_Disease/gene_data/GSE34721.csv"
out_clinical_data_file = "./output/preprocess/3/Huntingtons_Disease/clinical_data/GSE34721.csv"
json_path = "./output/preprocess/3/Huntingtons_Disease/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Get unique values for each clinical feature 
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene expression data availability
is_gene_available = True  # Yes, based on background info describing genome-wide gene expression data

# 2.1 Variable availability
trait_row = 1  # HTT CAG repeat length is recorded in row 1
gender_row = 0  # Gender is recorded in row 0
age_row = None  # Age data not available

# 2.2 Data type conversion functions
def convert_trait(value: str) -> Optional[int]:
    if not value or ':' not in value:
        return None
    try:
        # Extract CAG repeat length number
        cag_length = int(value.split(': ')[1])
        # HD threshold is typically >35 repeats
        return 1 if cag_length > 35 else 0
    except:
        return None

def convert_gender(value: str) -> Optional[int]:
    if not value or ':' not in value:
        return None
    gender = value.split(': ')[1].lower()
    if gender == 'female':
        return 0
    elif gender == 'male':
        return 1
    return None

def convert_age(value: str) -> Optional[float]:
    # Not used but defined for completeness
    return None

# 3. Save metadata
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=True)  # trait_row is not None

# 4. Extract clinical features
clinical_df = geo_select_clinical_features(clinical_data, 
                                         trait="HD",
                                         trait_row=trait_row,
                                         convert_trait=convert_trait,
                                         gender_row=gender_row,
                                         convert_gender=convert_gender)

print("Preview of clinical data:")
print(preview_df(clinical_df))

# Save clinical data
clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from the matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 row IDs
print("First 20 row IDs:")
print(genetic_data.index[:20].tolist())
# These are Affymetrix probe IDs from an older microarray platform (e.g. HG-U133)
# They need to be mapped to official gene symbols
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_file_path)

# Display information about the annotation data
print("Column names:")
print(gene_metadata.columns.tolist())
print("\nPreview of first few rows:")
print(json.dumps(preview_df(gene_metadata), indent=2))
# Get mapping between probe IDs and gene symbols from annotation data
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene Symbol')

# Convert probe measurements to gene expression values
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# Normalize the gene symbols in the index
gene_data = normalize_gene_symbols_in_index(gene_data)

# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# Get clinical features 
clinical_features = geo_select_clinical_features(
    clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age,
    gender_row=gender_row,
    convert_gender=convert_gender
)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Judge whether features are biased and remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and save metadata
note = "Dataset contains gene expression data from liver tissue samples of patients with various liver conditions including hemochromatosis"
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note=note
)

# 6. Save the linked data only if it's usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)