File size: 5,396 Bytes
54d4d57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Huntingtons_Disease"
cohort = "GSE34721"
# Input paths
in_trait_dir = "../DATA/GEO/Huntingtons_Disease"
in_cohort_dir = "../DATA/GEO/Huntingtons_Disease/GSE34721"
# Output paths
out_data_file = "./output/preprocess/3/Huntingtons_Disease/GSE34721.csv"
out_gene_data_file = "./output/preprocess/3/Huntingtons_Disease/gene_data/GSE34721.csv"
out_clinical_data_file = "./output/preprocess/3/Huntingtons_Disease/clinical_data/GSE34721.csv"
json_path = "./output/preprocess/3/Huntingtons_Disease/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Get unique values for each clinical feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene expression data availability
is_gene_available = True # Yes, based on background info describing genome-wide gene expression data
# 2.1 Variable availability
trait_row = 1 # HTT CAG repeat length is recorded in row 1
gender_row = 0 # Gender is recorded in row 0
age_row = None # Age data not available
# 2.2 Data type conversion functions
def convert_trait(value: str) -> Optional[int]:
if not value or ':' not in value:
return None
try:
# Extract CAG repeat length number
cag_length = int(value.split(': ')[1])
# HD threshold is typically >35 repeats
return 1 if cag_length > 35 else 0
except:
return None
def convert_gender(value: str) -> Optional[int]:
if not value or ':' not in value:
return None
gender = value.split(': ')[1].lower()
if gender == 'female':
return 0
elif gender == 'male':
return 1
return None
def convert_age(value: str) -> Optional[float]:
# Not used but defined for completeness
return None
# 3. Save metadata
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=True) # trait_row is not None
# 4. Extract clinical features
clinical_df = geo_select_clinical_features(clinical_data,
trait="HD",
trait_row=trait_row,
convert_trait=convert_trait,
gender_row=gender_row,
convert_gender=convert_gender)
print("Preview of clinical data:")
print(preview_df(clinical_df))
# Save clinical data
clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from the matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 row IDs
print("First 20 row IDs:")
print(genetic_data.index[:20].tolist())
# These are Affymetrix probe IDs from an older microarray platform (e.g. HG-U133)
# They need to be mapped to official gene symbols
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_file_path)
# Display information about the annotation data
print("Column names:")
print(gene_metadata.columns.tolist())
print("\nPreview of first few rows:")
print(json.dumps(preview_df(gene_metadata), indent=2))
# Get mapping between probe IDs and gene symbols from annotation data
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene Symbol')
# Convert probe measurements to gene expression values
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Normalize the gene symbols in the index
gene_data = normalize_gene_symbols_in_index(gene_data)
# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# Get clinical features
clinical_features = geo_select_clinical_features(
clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Judge whether features are biased and remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and save metadata
note = "Dataset contains gene expression data from liver tissue samples of patients with various liver conditions including hemochromatosis"
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note=note
)
# 6. Save the linked data only if it's usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |