File size: 5,971 Bytes
0a0878d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Intellectual_Disability"
cohort = "GSE100680"
# Input paths
in_trait_dir = "../DATA/GEO/Intellectual_Disability"
in_cohort_dir = "../DATA/GEO/Intellectual_Disability/GSE100680"
# Output paths
out_data_file = "./output/preprocess/3/Intellectual_Disability/GSE100680.csv"
out_gene_data_file = "./output/preprocess/3/Intellectual_Disability/gene_data/GSE100680.csv"
out_clinical_data_file = "./output/preprocess/3/Intellectual_Disability/clinical_data/GSE100680.csv"
json_path = "./output/preprocess/3/Intellectual_Disability/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Get unique values for each clinical feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Yes, this dataset appears to contain gene expression data based on the background information
# which mentions measuring APP expression levels and genome-wide effects
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
# Trait (DS vs Control) can be inferred from field 3 (description)
trait_row = 3
# Age is in field 2
age_row = 2
# Gender is not available
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(value):
"""Convert description to binary indicating if sample is DS (1) or control (0)"""
if not isinstance(value, str):
return None
value = value.split(': ')[-1]
if 'DS Clone' in value:
return 1
elif 'Euploid Clone' in value:
return 0
return None
def convert_age(value):
"""Convert age string to numeric days"""
if not isinstance(value, str):
return None
value = value.split(': ')[-1]
if 'Day' in value:
try:
return float(value.replace('Day ', ''))
except:
return None
return None
def convert_gender(value):
"""Not used since gender data is not available"""
return None
# 3. Save Initial Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Extract Clinical Features
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
preview_df(clinical_features)
# Save clinical features
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from the matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 row IDs
print("First 20 row IDs:")
print(genetic_data.index[:20].tolist())
# These identifiers are ILMN (Illumina) probe IDs, not gene symbols
# The ILMN_ prefix indicates they are from an Illumina microarray platform
# They need to be mapped to official gene symbols
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_file_path)
# Drop rows where Symbol is null or contains phage/virus/bacteria
gene_metadata = gene_metadata[gene_metadata['Symbol'].notna()]
gene_metadata = gene_metadata[~gene_metadata['Symbol'].str.contains('phage|virus|bacteria',
case=False, na=False)]
# Display information about the annotation data
print("Column names:")
print(gene_metadata.columns.tolist())
# Look at general data statistics
print("\nData shape:", gene_metadata.shape)
# Preview the first few rows
print("\nPreview of the annotation data:")
print(json.dumps(preview_df(gene_metadata), indent=2))
# Get gene mapping data from annotation
# 'ID' column matches the ILMN probe IDs in expression data
# 'Symbol' column contains the gene symbols
mapping_data = get_gene_mapping(gene_metadata, 'ID', 'Symbol')
# Apply gene mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# Get clinical features
clinical_features = geo_select_clinical_features(
clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# Early exit if trait values are all NaN
if linked_data[trait].isna().all():
is_biased = True
linked_data = None
else:
# 4. Judge whether features are biased and remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and save metadata
note = "Dataset contains gene expression data from pediatric AML samples, focusing on Down syndrome cases versus other AML types."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note=note
)
# 6. Save the linked data only if it's usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |