File size: 7,675 Bytes
0a0878d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Intellectual_Disability"
cohort = "GSE158385"

# Input paths
in_trait_dir = "../DATA/GEO/Intellectual_Disability"
in_cohort_dir = "../DATA/GEO/Intellectual_Disability/GSE158385"

# Output paths
out_data_file = "./output/preprocess/3/Intellectual_Disability/GSE158385.csv"
out_gene_data_file = "./output/preprocess/3/Intellectual_Disability/gene_data/GSE158385.csv"
out_clinical_data_file = "./output/preprocess/3/Intellectual_Disability/clinical_data/GSE158385.csv"
json_path = "./output/preprocess/3/Intellectual_Disability/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Get unique values for each clinical feature 
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
is_gene_available = True  # Yes, this appears to be gene expression data based on the background which studies effects in human amniocytes

# 2. Variable Availability and Data Type Conversion

# 2.1 Key identification
trait_row = 2  # Karyotype indicates T21 (Trisomy 21) status which represents Intellectual Disability
age_row = None  # No age data available 
gender_row = None  # Although gender info is embedded in karyotype, we can't reliably extract it since some patients could have multiple records

# 2.2 Data Type Conversion Functions
def convert_trait(value):
    if pd.isna(value):
        return None
    value = value.split(': ')[-1].strip()
    if '47' in value and 'T21' in value:  # Trisomy 21 cases
        return 1
    elif '46' in value and '2N' in value:  # Normal karyotype
        return 0
    return None

convert_age = None  # No age data
convert_gender = None  # No reliable gender data

# 3. Save Metadata 
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=is_trait_available)

# 4. Clinical Feature Extraction
if trait_row is not None:
    clinical_features = geo_select_clinical_features(clinical_data,
                                                   trait=trait,
                                                   trait_row=trait_row,
                                                   convert_trait=convert_trait)
    print("Preview of clinical features:")
    print(preview_df(clinical_features))
    
    clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from the matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 row IDs
print("First 20 row IDs:")
print(genetic_data.index[:20].tolist())
# The identifiers in the gene expression data appear to be Affymetrix transcript cluster IDs (TC.....hg.1)
# These are probe set IDs that need to be mapped to human gene symbols for analysis
requires_gene_mapping = True
# Identify all platform sections in the SOFT file
with gzip.open(soft_file_path, 'rt') as f:
    platform_sections = []
    current_platform = None
    for line in f:
        if line.startswith('^PLATFORM'):
            if current_platform:
                platform_sections.append(current_platform)
            current_platform = {'id': line.strip()}
        elif current_platform is not None and line.startswith('!Platform_title'):
            current_platform['title'] = line.strip()
            if 'human' in line.lower() or 'homo sapiens' in line.lower():
                current_platform['is_human'] = True
        elif not line.startswith('^'):  # End of platform section
            if current_platform:
                platform_sections.append(current_platform)
                current_platform = None
    if current_platform:  # Handle last platform if exists
        platform_sections.append(current_platform)

print("Found Platform Sections:")
for platform in platform_sections:
    print(platform)

# Look for human gene annotations
with gzip.open(soft_file_path, 'rt') as f:
    human_data = []
    is_human_section = False
    for line in f:
        if line.startswith('^PLATFORM'):
            is_human_section = False
            platform_id = line.strip()
        elif line.startswith('!Platform_title') and ('human' in line.lower() or 'homo sapiens' in line.lower()):
            is_human_section = True
            print(f"\nFound human platform section: {platform_id}")
            print(f"Platform title: {line.strip()}")
        elif is_human_section and not line.startswith(('!', '#', '^')):
            human_data.append(line)

if human_data:
    # Convert human annotation data to dataframe
    human_annotation_df = pd.read_csv(io.StringIO(''.join(human_data)), sep='\t')
    
    print("\nColumn names:")
    print(human_annotation_df.columns.tolist())
    
    print("\nData shape:", human_annotation_df.shape)
    
    print("\nPreview of the annotation data:")
    print(json.dumps(preview_df(human_annotation_df), indent=2))
else:
    print("\nNo human gene annotation data found in the SOFT file.")
# Extract probe and gene mapping from annotation data
prob_col = 'ID'  # The gene expression data uses TC.....hg.1 identifiers, which match the ID column
gene_col = 'gene_assignment'  # This column contains gene symbol information

# Get initial mapping between probes and genes
mapping_df = get_gene_mapping(human_annotation_df, prob_col, gene_col)

# Convert probe-level expression data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# Normalize gene symbols to ensure consistency
gene_data = normalize_gene_symbols_in_index(gene_data)

# Preview the result
print("\nGene expression data shape:", gene_data.shape)
print("\nFirst few gene symbols:", gene_data.index[:5].tolist())

# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# Get clinical features 
clinical_features = geo_select_clinical_features(
    clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age,
    gender_row=gender_row,
    convert_gender=convert_gender
)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# Early exit if trait values are all NaN
if linked_data[trait].isna().all():
    is_biased = True
    linked_data = None
else:
    # 4. Judge whether features are biased and remove biased demographic features
    is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and save metadata
note = "Dataset contains gene expression data from pediatric AML samples, focusing on Down syndrome cases versus other AML types."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note=note
)

# 6. Save the linked data only if it's usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)