File size: 6,299 Bytes
0a0878d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Intellectual_Disability"
cohort = "GSE285666"

# Input paths
in_trait_dir = "../DATA/GEO/Intellectual_Disability"
in_cohort_dir = "../DATA/GEO/Intellectual_Disability/GSE285666"

# Output paths
out_data_file = "./output/preprocess/3/Intellectual_Disability/GSE285666.csv"
out_gene_data_file = "./output/preprocess/3/Intellectual_Disability/gene_data/GSE285666.csv"
out_clinical_data_file = "./output/preprocess/3/Intellectual_Disability/clinical_data/GSE285666.csv"
json_path = "./output/preprocess/3/Intellectual_Disability/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Get unique values for each clinical feature 
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene expression availability - Yes, it uses Affymetrix exon arrays
is_gene_available = True

# 2.1 Get row numbers for clinical features
trait_row = 0  # disease state row
age_row = None  # age not available 
gender_row = None  # gender not available

# 2.2 Define conversion functions
def convert_trait(value: str) -> int:
    """Convert disease state to binary: 1 for Williams syndrome, 0 for control"""
    if pd.isna(value) or value is None:
        return None
    if ':' in value:
        value = value.split(':')[1].strip().lower()
    if 'williams syndrome' in value:
        return 1
    elif 'unaffected' in value or 'control' in value:
        return 0
    return None

def convert_age(value: str) -> float:
    """Placeholder function since age is not available"""
    return None
    
def convert_gender(value: str) -> int:
    """Placeholder function since gender is not available"""
    return None

# 3. Save metadata about dataset usability
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, 
                            is_gene_available=is_gene_available,
                            is_trait_available=is_trait_available)

# 4. Extract clinical features since trait data is available
clinical_features = geo_select_clinical_features(clinical_df=clinical_data,
                                               trait=trait,
                                               trait_row=trait_row,
                                               convert_trait=convert_trait)

# Preview results
preview_result = preview_df(clinical_features)
print("Preview of extracted clinical features:")
print(preview_result)

# Save clinical data
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from the matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 row IDs
print("First 20 row IDs:")
print(genetic_data.index[:20].tolist())
# These appear to be probe IDs from a microarray platform, not standard human gene symbols
# Examining the numeric format and length pattern confirms they need mapping
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_file_path)

# Display information about the annotation data
print("Column names:")
print(gene_metadata.columns.tolist())

# Look at general data statistics 
print("\nData shape:", gene_metadata.shape)

# Display non-NaN value counts for key gene identifier columns
print("\nNumber of non-NaN values in key columns:")
for col in ['ID', 'gene_assignment']:
    print(f"{col}: {gene_metadata[col].notna().sum()}")

# Preview rows with actual gene information
print("\nPreview of rows with gene information:")
gene_rows = gene_metadata[gene_metadata['gene_assignment'].notna()].head()
print(json.dumps(preview_df(gene_rows), indent=2))
# Get gene mapping dataframe
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='gene_assignment')
mapping_data = mapping_data[mapping_data['Gene'] != '---']

# Extract gene symbols from gene_assignment strings
def extract_gene_symbol(text):
    if pd.isna(text):
        return None
    parts = text.split('//')
    if len(parts) >= 2:
        return parts[1].strip()
    return None

mapping_data['Gene'] = mapping_data['Gene'].apply(extract_gene_symbol)
mapping_data = mapping_data.dropna()

# Apply gene mapping to convert probe data to gene data 
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Print info about the converted data
print("Shape of probe-level data:", genetic_data.shape)
print("Shape of gene-level data:", gene_data.shape)
print("\nFirst few genes:")
print(gene_data.index[:10].tolist())
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# Get clinical features 
clinical_features = geo_select_clinical_features(
    clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age,
    gender_row=gender_row,
    convert_gender=convert_gender
)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# Early exit if trait values are all NaN
if linked_data[trait].isna().all():
    is_biased = True
    linked_data = None
else:
    # 4. Judge whether features are biased and remove biased demographic features
    is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and save metadata
note = "Dataset contains gene expression data from pediatric AML samples, focusing on Down syndrome cases versus other AML types."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note=note
)

# 6. Save the linked data only if it's usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)