File size: 6,962 Bytes
0a0878d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Intellectual_Disability"
cohort = "GSE59630"

# Input paths
in_trait_dir = "../DATA/GEO/Intellectual_Disability"
in_cohort_dir = "../DATA/GEO/Intellectual_Disability/GSE59630"

# Output paths
out_data_file = "./output/preprocess/3/Intellectual_Disability/GSE59630.csv"
out_gene_data_file = "./output/preprocess/3/Intellectual_Disability/gene_data/GSE59630.csv"
out_clinical_data_file = "./output/preprocess/3/Intellectual_Disability/clinical_data/GSE59630.csv"
json_path = "./output/preprocess/3/Intellectual_Disability/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Get unique values for each clinical feature 
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# From the background info, we can see this is a gene expression study analyzing transcriptome, so:
is_gene_available = True

# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
# From sample characteristics, we can find:
trait_row = 2  # 'disease status' indicates DS vs Control
age_row = 4    # Age data available
gender_row = 3 # Sex data available

# 2.2 Data Type Conversion Functions
def convert_trait(x):
    """Convert disease status to binary (0: Control, 1: DS)"""
    if x is None:
        return None
    value = x.split(': ')[-1].strip()
    if value == 'CTL':
        return 0
    elif value == 'DS':
        return 1
    return None

def convert_age(x):
    """Convert age to continuous numeric value in years"""
    if x is None:
        return None
    value = x.split(': ')[-1].strip().lower()
    
    # Extract number and unit
    try:
        num = float(''.join(filter(str.isdigit, value)))
        if 'wg' in value:  # weeks of gestation
            return num/52  # convert to years
        elif 'mo' in value:  # months
            return num/12  # convert to years
        elif 'yr' in value:  # years
            return num
        return None
    except:
        return None

def convert_gender(x):
    """Convert gender to binary (0: Female, 1: Male)"""
    if x is None:
        return None
    value = x.split(': ')[-1].strip()
    if value == 'F':
        return 0
    elif value == 'M':
        return 1
    return None

# 3. Save Metadata 
validate_and_save_cohort_info(is_final=False, 
                             cohort=cohort,
                             info_path=json_path,
                             is_gene_available=is_gene_available,
                             is_trait_available=trait_row is not None)

# 4. Clinical Feature Extraction
if trait_row is not None:
    clinical_features = geo_select_clinical_features(clinical_data,
                                                   trait=trait,
                                                   trait_row=trait_row,
                                                   convert_trait=convert_trait,
                                                   age_row=age_row,
                                                   convert_age=convert_age,
                                                   gender_row=gender_row,
                                                   convert_gender=convert_gender)
    
    # Preview the extracted features
    preview = preview_df(clinical_features)
    print("Preview of clinical features:", preview)
    
    # Save to CSV
    clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from the matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 row IDs
print("First 20 row IDs:")
print(genetic_data.index[:20].tolist())
# These appear to be probe IDs from a microarray platform rather than gene symbols
# They are numeric IDs which need to be mapped to human gene symbols
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_file_path)

# Display information about the annotation data
print("Column names:")
print(gene_metadata.columns.tolist())

# Look at general data statistics 
print("\nData shape:", gene_metadata.shape)

# Display non-NaN value counts for key gene identifier columns
print("\nNumber of non-NaN values in key columns:")
for col in ['ID', 'gene_assignment']:
    print(f"{col}: {gene_metadata[col].notna().sum()}")

# Preview rows with actual gene information
print("\nPreview of rows with gene information:")
gene_rows = gene_metadata[gene_metadata['gene_assignment'].notna()].head()
print(json.dumps(preview_df(gene_rows), indent=2))
# From the previous output, we can see:
# - Gene identifiers are in the 'ID' column
# - Gene symbols are in 'gene_assignment' column and need to be extracted
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='gene_assignment')

# Apply the mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Print information about the mapping result
print("\nOriginal probes:", len(genetic_data))
print("Mapped genes:", len(gene_data))
print("\nPreview of first few genes and their expression values:")
print(json.dumps(preview_df(gene_data), indent=2))
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# Get clinical features 
clinical_features = geo_select_clinical_features(
    clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age,
    gender_row=gender_row,
    convert_gender=convert_gender
)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# Early exit if trait values are all NaN
if linked_data[trait].isna().all():
    is_biased = True
    linked_data = None
else:
    # 4. Judge whether features are biased and remove biased demographic features
    is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and save metadata
note = "Dataset contains gene expression data from pediatric AML samples, focusing on Down syndrome cases versus other AML types."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note=note
)

# 6. Save the linked data only if it's usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)