File size: 6,390 Bytes
0a0878d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Intellectual_Disability"
cohort = "GSE89594"

# Input paths
in_trait_dir = "../DATA/GEO/Intellectual_Disability"
in_cohort_dir = "../DATA/GEO/Intellectual_Disability/GSE89594"

# Output paths
out_data_file = "./output/preprocess/3/Intellectual_Disability/GSE89594.csv"
out_gene_data_file = "./output/preprocess/3/Intellectual_Disability/gene_data/GSE89594.csv"
out_clinical_data_file = "./output/preprocess/3/Intellectual_Disability/clinical_data/GSE89594.csv"
json_path = "./output/preprocess/3/Intellectual_Disability/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Get unique values for each clinical feature 
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Based on background info, this is a gene expression study using peripheral blood
is_gene_available = True

# 2.1 Data Availability
trait_row = 0  # "diagnosis" in row 0 contains trait info
age_row = 2    # "age" in row 2
gender_row = 3  # "gender" in row 3

# 2.2 Data Type Conversion Functions
def convert_trait(x):
    """Convert trait status to binary"""
    if not isinstance(x, str):
        return None
    value = x.split(': ')[-1].lower()
    # Williams Syndrome is intellectual disability
    if 'williams syndrome' in value or 'ws' in value:
        return 1
    elif 'control' in value:
        return 0
    # ASD samples counted as None since not relevant
    return None

def convert_age(x):
    """Convert age to continuous values"""
    if not isinstance(x, str):
        return None
    value = x.split(': ')[-1].lower()
    try:
        # Extract numeric value before 'y'
        return float(value.replace('y',''))
    except:
        return None

def convert_gender(x):
    """Convert gender to binary (0=female, 1=male)"""
    if not isinstance(x, str):
        return None
    value = x.split(': ')[-1].lower()
    if 'female' in value:
        return 0
    elif 'male' in value:
        return 1
    return None

# 3. Save Metadata  
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=is_trait_available)

# 4. Clinical Feature Extraction
if trait_row is not None:
    clinical_features = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age, 
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the processed clinical data
    preview = preview_df(clinical_features)
    print("Preview of processed clinical data:")
    print(preview)
    
    # Save clinical features
    clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from the matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 row IDs
print("First 20 row IDs:")
print(genetic_data.index[:20].tolist())
# Based on the provided sample row IDs which are just sequential numbers, 
# we need to map these identifiers to proper gene symbols
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_file_path)

# Display information about the annotation data
print("Column names:")
print(gene_metadata.columns.tolist())

# Look at general data statistics 
print("\nData shape:", gene_metadata.shape)

# Display non-NaN value counts for key gene identifier columns
print("\nNumber of non-NaN values in key columns:")
for col in ['ID', 'GENE_SYMBOL']:
    print(f"{col}: {gene_metadata[col].notna().sum()}")

# Preview rows with actual gene information
print("\nPreview of rows with gene information:")
gene_rows = gene_metadata[gene_metadata['GENE_SYMBOL'].notna()].head()
print(json.dumps(preview_df(gene_rows), indent=2))
# 1. Identify mapping columns
# ID in expression data corresponds to ID in annotation
# GENE_SYMBOL contains gene symbols for mapping
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL')

# 2. Apply mapping and aggregate to get gene expression data 
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# Preview the processed data
print("\nPreview of mapped gene expression data:")
print(f"Shape: {gene_data.shape}")
print("\nFirst few gene symbols:")
print(gene_data.index[:10].tolist())
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# Get clinical features 
clinical_features = geo_select_clinical_features(
    clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age,
    gender_row=gender_row,
    convert_gender=convert_gender
)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# Early exit if trait values are all NaN
if linked_data[trait].isna().all():
    is_biased = True
    linked_data = None
else:
    # 4. Judge whether features are biased and remove biased demographic features
    is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and save metadata
note = "Dataset contains gene expression data from pediatric AML samples, focusing on Down syndrome cases versus other AML types."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note=note
)

# 6. Save the linked data only if it's usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)