File size: 6,243 Bytes
0a0878d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Kidney_Chromophobe"
cohort = "GSE40911"

# Input paths
in_trait_dir = "../DATA/GEO/Kidney_Chromophobe"
in_cohort_dir = "../DATA/GEO/Kidney_Chromophobe/GSE40911"

# Output paths
out_data_file = "./output/preprocess/3/Kidney_Chromophobe/GSE40911.csv"
out_gene_data_file = "./output/preprocess/3/Kidney_Chromophobe/gene_data/GSE40911.csv"
out_clinical_data_file = "./output/preprocess/3/Kidney_Chromophobe/clinical_data/GSE40911.csv"
json_path = "./output/preprocess/3/Kidney_Chromophobe/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Get unique values for each clinical feature 
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# The series title and summary indicate this dataset contains expression analysis data
# It uses cDNA microarray platform enriched in gene fragments, so gene data is available
is_gene_available = True

# 2.1 Data Availability
# Trait: tissue type indicates tumor vs non-tumor status (row 2)
trait_row = 2
# Age: age at surgery available (row 4) 
age_row = 4
# Gender: gender data available (row 3)
gender_row = 3

# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
    """Convert tissue type to binary: 1 for tumor, 0 for non-tumor"""
    if not isinstance(value, str):
        return None
    value = value.lower().split(": ")[-1]
    if "tumor" in value and "non" not in value and "adjacent" not in value:
        return 1
    elif "adjacent" in value or "non" in value:
        return 0
    return None

def convert_age(value: str) -> float:
    """Convert age string to float value"""
    if not isinstance(value, str):
        return None
    try:
        age = float(value.split(": ")[-1])
        return age
    except:
        return None

def convert_gender(value: str) -> int:
    """Convert gender to binary: 1 for male, 0 for female"""
    if not isinstance(value, str):
        return None
    value = value.lower().split(": ")[-1]
    if value == "male":
        return 1
    elif value == "female":
        return 0
    return None

# 3. Save Metadata
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=trait_row is not None)

# 4. Clinical Feature Extraction
selected_clinical = geo_select_clinical_features(
    clinical_df=clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age,
    gender_row=gender_row,
    convert_gender=convert_gender
)

# Preview the extracted features
print("Preview of extracted clinical features:")
print(preview_df(selected_clinical))

# Save clinical data
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
selected_clinical.to_csv(out_clinical_data_file)
# Extract gene expression data from the matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 row IDs
print("First 20 row IDs:")
print(genetic_data.index[:20].tolist())
# The row IDs look like ID numbers, not gene symbols
# These need to be mapped to gene symbols for downstream analysis 
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_file_path)

# Display information about the annotation data
print("Column names:")
print(gene_metadata.columns.tolist())

# Look at general data statistics 
print("\nData shape:", gene_metadata.shape)

# Preview the first few rows
print("\nPreview of the annotation data:")
print(json.dumps(preview_df(gene_metadata), indent=2))
# 1. ID is storing same type of identifiers as in gene expression data
# GENE_SYMBOL is storing gene symbols
prob_col = 'ID'
gene_col = 'GENE_SYMBOL'

# 2. Extract mapping between probe IDs and gene symbols
mapping_data = get_gene_mapping(gene_metadata, prob_col, gene_col)

# 3. Apply gene mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Preview the mapped gene data
print("Preview of gene expression data after mapping:")
print("Shape:", gene_data.shape)
print("\nFirst 5 gene symbols:")
print(gene_data.index[:5].tolist())
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# Get clinical features 
clinical_features = geo_select_clinical_features(
    clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age,
    gender_row=gender_row,
    convert_gender=convert_gender
)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# Early exit if trait values are all NaN
if linked_data[trait].isna().all():
    is_biased = True
    linked_data = None
else:
    # 4. Judge whether features are biased and remove biased demographic features
    is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and save metadata
note = "Dataset from a cancer gene expression study using oligonucleotide microarrays, containing samples from various tissue types including kidney, lung, stomach and other organs, with both tumor and normal tissues."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note=note
)

# 6. Save the linked data only if it's usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)