File size: 6,243 Bytes
0a0878d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Kidney_Chromophobe"
cohort = "GSE40911"
# Input paths
in_trait_dir = "../DATA/GEO/Kidney_Chromophobe"
in_cohort_dir = "../DATA/GEO/Kidney_Chromophobe/GSE40911"
# Output paths
out_data_file = "./output/preprocess/3/Kidney_Chromophobe/GSE40911.csv"
out_gene_data_file = "./output/preprocess/3/Kidney_Chromophobe/gene_data/GSE40911.csv"
out_clinical_data_file = "./output/preprocess/3/Kidney_Chromophobe/clinical_data/GSE40911.csv"
json_path = "./output/preprocess/3/Kidney_Chromophobe/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Get unique values for each clinical feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# The series title and summary indicate this dataset contains expression analysis data
# It uses cDNA microarray platform enriched in gene fragments, so gene data is available
is_gene_available = True
# 2.1 Data Availability
# Trait: tissue type indicates tumor vs non-tumor status (row 2)
trait_row = 2
# Age: age at surgery available (row 4)
age_row = 4
# Gender: gender data available (row 3)
gender_row = 3
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
"""Convert tissue type to binary: 1 for tumor, 0 for non-tumor"""
if not isinstance(value, str):
return None
value = value.lower().split(": ")[-1]
if "tumor" in value and "non" not in value and "adjacent" not in value:
return 1
elif "adjacent" in value or "non" in value:
return 0
return None
def convert_age(value: str) -> float:
"""Convert age string to float value"""
if not isinstance(value, str):
return None
try:
age = float(value.split(": ")[-1])
return age
except:
return None
def convert_gender(value: str) -> int:
"""Convert gender to binary: 1 for male, 0 for female"""
if not isinstance(value, str):
return None
value = value.lower().split(": ")[-1]
if value == "male":
return 1
elif value == "female":
return 0
return None
# 3. Save Metadata
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None)
# 4. Clinical Feature Extraction
selected_clinical = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
print("Preview of extracted clinical features:")
print(preview_df(selected_clinical))
# Save clinical data
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
selected_clinical.to_csv(out_clinical_data_file)
# Extract gene expression data from the matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 row IDs
print("First 20 row IDs:")
print(genetic_data.index[:20].tolist())
# The row IDs look like ID numbers, not gene symbols
# These need to be mapped to gene symbols for downstream analysis
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_file_path)
# Display information about the annotation data
print("Column names:")
print(gene_metadata.columns.tolist())
# Look at general data statistics
print("\nData shape:", gene_metadata.shape)
# Preview the first few rows
print("\nPreview of the annotation data:")
print(json.dumps(preview_df(gene_metadata), indent=2))
# 1. ID is storing same type of identifiers as in gene expression data
# GENE_SYMBOL is storing gene symbols
prob_col = 'ID'
gene_col = 'GENE_SYMBOL'
# 2. Extract mapping between probe IDs and gene symbols
mapping_data = get_gene_mapping(gene_metadata, prob_col, gene_col)
# 3. Apply gene mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Preview the mapped gene data
print("Preview of gene expression data after mapping:")
print("Shape:", gene_data.shape)
print("\nFirst 5 gene symbols:")
print(gene_data.index[:5].tolist())
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# Get clinical features
clinical_features = geo_select_clinical_features(
clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# Early exit if trait values are all NaN
if linked_data[trait].isna().all():
is_biased = True
linked_data = None
else:
# 4. Judge whether features are biased and remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and save metadata
note = "Dataset from a cancer gene expression study using oligonucleotide microarrays, containing samples from various tissue types including kidney, lung, stomach and other organs, with both tumor and normal tissues."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note=note
)
# 6. Save the linked data only if it's usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |