File size: 6,139 Bytes
0a0878d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Kidney_Chromophobe"
cohort = "GSE40912"

# Input paths
in_trait_dir = "../DATA/GEO/Kidney_Chromophobe"
in_cohort_dir = "../DATA/GEO/Kidney_Chromophobe/GSE40912"

# Output paths
out_data_file = "./output/preprocess/3/Kidney_Chromophobe/GSE40912.csv"
out_gene_data_file = "./output/preprocess/3/Kidney_Chromophobe/gene_data/GSE40912.csv"
out_clinical_data_file = "./output/preprocess/3/Kidney_Chromophobe/clinical_data/GSE40912.csv"
json_path = "./output/preprocess/3/Kidney_Chromophobe/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Get unique values for each clinical feature 
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
is_gene_available = True  # Background info shows it's a gene expression microarray study

# 2.1 Data Row Identification
trait_row = 14  # 'patient status' contains binary survival outcome
age_row = 4    # 'age at surgery' contains age data
gender_row = 3  # Gender info available

# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
    """Convert patient status to binary: 0=alive, 1=dead"""
    if not value or ":" not in value:
        return None
    status = value.split(":")[1].strip().lower()
    if "death" in status:
        return 1
    elif "alive" in status:
        return 0
    return None

def convert_age(value: str) -> float:
    """Convert age string to float"""
    if not value or ":" not in value:
        return None
    try:
        age = float(value.split(":")[1].strip().split()[0])
        return age
    except:
        return None

def convert_gender(value: str) -> int:
    """Convert gender to binary: 0=female, 1=male"""
    if not value or ":" not in value:
        return None
    gender = value.split(":")[1].strip().lower()
    if "female" in gender:
        return 0
    elif "male" in gender:
        return 1
    return None

# 3. Save Initial Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Clinical Feature Extraction
if trait_row is not None:
    clinical_features = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the extracted features
    print("Preview of clinical features:")
    print(preview_df(clinical_features))
    
    # Save to CSV
    clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from the matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 row IDs
print("First 20 row IDs:")
print(genetic_data.index[:20].tolist())
# The row identifiers appear to be numerical indices rather than human gene symbols
# This indicates that gene mapping will be needed to convert identifiers to gene symbols
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_file_path)

# Display information about the annotation data
print("Column names:")
print(gene_metadata.columns.tolist())

# Look at general data statistics 
print("\nData shape:", gene_metadata.shape)

# Preview the first few rows
print("\nPreview of the annotation data:")
print(json.dumps(preview_df(gene_metadata), indent=2))
# 1. & 2. Get gene mapping dataframe from gene annotation
# The 'ID' column in gene_metadata matches the row indices in genetic_data
# The 'GENE_SYMBOL' column contains the gene symbols we want to map to
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL')

# 3. Convert probe-level measurements to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# Preview the results
print("First 10 gene symbols after mapping:")
print(gene_data.index[:10].tolist())

print("\nShape of gene expression data before and after mapping:")
print(f"Before: {genetic_data.shape}")
print(f"After: {gene_data.shape}")
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# Get clinical features 
clinical_features = geo_select_clinical_features(
    clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age,
    gender_row=gender_row,
    convert_gender=convert_gender
)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# Early exit if trait values are all NaN
if linked_data[trait].isna().all():
    is_biased = True
    linked_data = None
else:
    # 4. Judge whether features are biased and remove biased demographic features
    is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and save metadata
note = "Dataset from a cancer gene expression study using oligonucleotide microarrays, containing samples from various tissue types including kidney, lung, stomach and other organs, with both tumor and normal tissues."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note=note
)

# 6. Save the linked data only if it's usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)