File size: 6,863 Bytes
0a0878d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Kidney_Chromophobe"
cohort = "GSE40914"

# Input paths
in_trait_dir = "../DATA/GEO/Kidney_Chromophobe"
in_cohort_dir = "../DATA/GEO/Kidney_Chromophobe/GSE40914"

# Output paths
out_data_file = "./output/preprocess/3/Kidney_Chromophobe/GSE40914.csv"
out_gene_data_file = "./output/preprocess/3/Kidney_Chromophobe/gene_data/GSE40914.csv"
out_clinical_data_file = "./output/preprocess/3/Kidney_Chromophobe/clinical_data/GSE40914.csv"
json_path = "./output/preprocess/3/Kidney_Chromophobe/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Get unique values for each clinical feature 
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Based on background info, this is a microarray dataset studying gene expression
# including lncRNAs in RCC, so gene data should be available
is_gene_available = True

# 2. Data Availability and Type Conversion
# Sample characteristics show limited data - disease, tissue, and sample type
# 2.1 Data Availability 
# trait_row - Can infer case/control from "tissue" field (row 1)
trait_row = 1
# age_row - Not available
age_row = None  
# gender_row - Not available
gender_row = None

# 2.2 Data Type Conversion Functions
def convert_trait(value):
    """Convert tissue field to binary trait"""
    if not isinstance(value, str):
        return None
    # Extract value after colon
    if ':' in value:
        value = value.split(':', 1)[1].strip()
    # Map tissue type to binary - tumor (1) vs non-tumor (0)
    if 'tumor' in value.lower():
        return 1
    return 0

# No age/gender conversion functions needed since data not available
convert_age = None
convert_gender = None

# 3. Save Metadata
# Initial validation based on gene and trait availability
is_validated = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=trait_row is not None
)

# 4. Clinical Feature Extraction
# Since trait_row is not None, extract clinical features
if trait_row is not None:
    clinical_features = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the extracted features
    preview = preview_df(clinical_features)
    print("Preview of clinical features:")
    print(preview)
    
    # Save clinical features
    clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from the matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 row IDs
print("First 20 row IDs:")
print(genetic_data.index[:20].tolist())
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_file_path)

# Display information about the annotation data
print("Column names:")
print(gene_metadata.columns.tolist())

# Look at general data statistics 
print("\nData shape:", gene_metadata.shape)

# Preview the first few rows
print("\nPreview of the annotation data:")
print(json.dumps(preview_df(gene_metadata), indent=2))
# 1. In gene expression data, row IDs are simple numbers like "1", "2", etc.
# From annotation preview, 'ID' contains the same identifiers
# 'GENE_SYMBOL' contains the target gene symbols we want to map to
prob_col = 'ID'
gene_col = 'GENE_SYMBOL'

# 2. Get gene mapping dataframe
mapping_df = get_gene_mapping(gene_metadata, prob_col, gene_col)

# Convert expression values to numeric type, handling 'Null' values
genetic_data = genetic_data.replace(['Null', 'null', 'NULL'], pd.NA)
numeric_cols = genetic_data.columns
genetic_data[numeric_cols] = genetic_data[numeric_cols].astype(float)

# 3. Convert probe measurements to gene expression values
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# Print dimensions of output
print("Gene expression data shape:", gene_data.shape)
print("\nFirst few gene symbols:", gene_data.index[:5].tolist())
# 1. In gene expression data, row IDs are simple numbers like "1", "2", etc.
# From annotation preview, 'ID' contains the same identifiers
# 'GENE_SYMBOL' contains the target gene symbols we want to map to
prob_col = 'ID'
gene_col = 'GENE_SYMBOL'

# 2. Get gene mapping dataframe 
mapping_df = get_gene_mapping(gene_metadata, prob_col, gene_col)

# Convert expression values to numeric type
numeric_cols = genetic_data.columns
genetic_data[numeric_cols] = genetic_data[numeric_cols].apply(pd.to_numeric, errors='coerce')

# 3. Convert probe measurements to gene expression values
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# Print dimensions of output
print("Gene expression data shape:", gene_data.shape)
print("\nFirst few gene symbols:", gene_data.index[:5].tolist())
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# Get clinical features 
clinical_features = geo_select_clinical_features(
    clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age,
    gender_row=gender_row,
    convert_gender=convert_gender
)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# Early exit if trait values are all NaN
if linked_data[trait].isna().all():
    is_biased = True
    linked_data = None
else:
    # 4. Judge whether features are biased and remove biased demographic features
    is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and save metadata
note = "Dataset from a cancer gene expression study using oligonucleotide microarrays, containing samples from various tissue types including kidney, lung, stomach and other organs, with both tumor and normal tissues."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note=note
)

# 6. Save the linked data only if it's usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)