File size: 5,592 Bytes
0a0878d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Kidney_Chromophobe"
cohort = "GSE95425"

# Input paths
in_trait_dir = "../DATA/GEO/Kidney_Chromophobe"
in_cohort_dir = "../DATA/GEO/Kidney_Chromophobe/GSE95425"

# Output paths
out_data_file = "./output/preprocess/3/Kidney_Chromophobe/GSE95425.csv"
out_gene_data_file = "./output/preprocess/3/Kidney_Chromophobe/gene_data/GSE95425.csv"
out_clinical_data_file = "./output/preprocess/3/Kidney_Chromophobe/clinical_data/GSE95425.csv"
json_path = "./output/preprocess/3/Kidney_Chromophobe/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Get unique values for each clinical feature 
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# From the background info, it's clear this is a transcriptome study
# "Comprehensive transcriptome studies..." suggests gene expression data is available
is_gene_available = True

# 2.1 Data Availability
# For trait: In cell 1, all samples are "Normal kidney tissue", but this is a constant
# In cell 2, we have sampling depth which can serve as a proxy for kidney regions
trait_row = 2  

# For age and gender: Not available in sample characteristics
age_row = None
gender_row = None

# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
    """Convert sampling depth to binary:
    cortex = 0 (superficial)
    medulla/cortex_medulla = 1 (deeper)
    """
    if not value:
        return None
    value = value.split(': ')[-1].lower()
    if 'cortex' in value and 'medulla' not in value:
        return 0
    elif 'medulla' in value:
        return 1
    return None

def convert_age(value: str) -> float:
    return None

def convert_gender(value: str) -> int:
    return None

# 3. Save Metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=trait_row is not None
)

# 4. Clinical Feature Extraction
if trait_row is not None:
    clinical_features = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the processed clinical data
    print("Preview of processed clinical features:")
    print(preview_df(clinical_features))
    
    # Save clinical features
    clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from the matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 row IDs
print("First 20 row IDs:")
print(genetic_data.index[:20].tolist())
# These IDs are from Illumina microarray platform (ILMN prefix)
# They need to be mapped to official gene symbols for standardization
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_file_path)

# Display information about the annotation data
print("Column names:")
print(gene_metadata.columns.tolist())

# Look at general data statistics 
print("\nData shape:", gene_metadata.shape)

# Preview the first few rows
print("\nPreview of the annotation data:")
print(json.dumps(preview_df(gene_metadata), indent=2))
# The 'ID' column in gene_metadata matches the ILMN identifiers in gene expression data
# The 'Symbol' column contains the gene symbols we want to map to
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Symbol')

# Apply the gene mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Preview the results
print("First 20 gene symbols:")
print(gene_data.index[:20].tolist())
print("\nNumber of genes:", len(gene_data))
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# Get clinical features 
clinical_features = geo_select_clinical_features(
    clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    gender_row=gender_row,
    convert_gender=convert_gender
)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# Early exit if trait values are all NaN
if linked_data[trait].isna().all():
    is_biased = True
    linked_data = None
else:
    # 4. Judge whether features are biased and remove biased demographic features
    is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and save metadata
note = "Dataset contains gene expression data from normal kidney tissue samples, comparing cortex and medulla regions."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note=note
)

# 6. Save the linked data only if it's usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)