File size: 5,961 Bytes
f811ee7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Kidney_Clear_Cell_Carcinoma"
cohort = "GSE131027"

# Input paths
in_trait_dir = "../DATA/GEO/Kidney_Clear_Cell_Carcinoma"
in_cohort_dir = "../DATA/GEO/Kidney_Clear_Cell_Carcinoma/GSE131027"

# Output paths
out_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/GSE131027.csv"
out_gene_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/gene_data/GSE131027.csv"
out_clinical_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/clinical_data/GSE131027.csv"
json_path = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Get unique values for each clinical feature 
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Since we have gene mutation data but no explicit gene expression matrix shown,
# this dataset likely contains pure mutation data rather than expression data
is_gene_available = False

# 2. Variable Availability and Data Type Conversion
# 2.1 Cancer type is recorded in row 1, we can use it to identify kidney cancer cases
trait_row = 1

# Age and gender are not recorded in the sample characteristics
age_row = None  
gender_row = None

# 2.2 Data Type Conversion Functions
def convert_trait(x):
    # Extract value after colon 
    if ':' in str(x):
        value = str(x).split(':')[1].strip().lower()
        # Check if it's kidney cancer
        if 'renal cell carcinoma' in value:
            return 1
        else:
            return 0
    return None

def convert_age(x):
    return None

def convert_gender(x): 
    return None

# 3. Initial Filtering and Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=is_trait_available)

# 4. Clinical Feature Extraction 
if trait_row is not None:
    # Extract clinical features
    clinical_df = geo_select_clinical_features(clinical_data, 
                                             trait=trait,
                                             trait_row=trait_row,
                                             convert_trait=convert_trait,
                                             age_row=age_row,
                                             convert_age=convert_age,
                                             gender_row=gender_row, 
                                             convert_gender=convert_gender)
    
    # Preview the processed data
    preview = preview_df(clinical_df)
    print("Preview of clinical data:")
    print(preview)
    
    # Save to CSV
    clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from the matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 row IDs
print("First 20 row IDs:")
print(genetic_data.index[:20].tolist())
# These are probe IDs from the Affymetrix human microarray platform
# They need to be mapped to human gene symbols for analysis
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_file_path)

# Display information about the annotation data
print("Column names:")
print(gene_metadata.columns.tolist())

# Look at general data statistics 
print("\nData shape:", gene_metadata.shape)

# Preview the first few rows
print("\nPreview of the annotation data:")
print(json.dumps(preview_df(gene_metadata), indent=2))
# 1. Looking at gene annotations, 'ID' matches probe IDs in expression data, and 'Gene Symbol' has corresponding gene symbols
prob_col = 'ID'
gene_col = 'Gene Symbol'

# 2. Get mapping between probe IDs and gene symbols
mapping_df = get_gene_mapping(gene_metadata, prob_col, gene_col)

# 3. Apply gene mapping to convert probe expression to gene expression 
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# Early exit if trait values are all NaN
if linked_data[trait].isna().all():
    is_biased = True
    linked_data = None
else:
    # 4. Judge whether features are biased and remove biased demographic features
    is_biased = judge_binary_variable_biased(linked_data, trait)
    if "Age" in linked_data.columns:
        if judge_continuous_variable_biased(linked_data, "Age"):
            linked_data = linked_data.drop(columns="Age")
    if "Gender" in linked_data.columns:
        if judge_binary_variable_biased(linked_data, "Gender"):
            linked_data = linked_data.drop(columns="Gender")

# 5. Final validation and save metadata
note = "Dataset from a cancer gene expression study using oligonucleotide microarrays, containing samples of kidney chromophobe tumors and normal tissues."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note=note
)

# 6. Save the linked data only if it's usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)