File size: 5,961 Bytes
f811ee7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Kidney_Clear_Cell_Carcinoma"
cohort = "GSE131027"
# Input paths
in_trait_dir = "../DATA/GEO/Kidney_Clear_Cell_Carcinoma"
in_cohort_dir = "../DATA/GEO/Kidney_Clear_Cell_Carcinoma/GSE131027"
# Output paths
out_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/GSE131027.csv"
out_gene_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/gene_data/GSE131027.csv"
out_clinical_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/clinical_data/GSE131027.csv"
json_path = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Get unique values for each clinical feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Since we have gene mutation data but no explicit gene expression matrix shown,
# this dataset likely contains pure mutation data rather than expression data
is_gene_available = False
# 2. Variable Availability and Data Type Conversion
# 2.1 Cancer type is recorded in row 1, we can use it to identify kidney cancer cases
trait_row = 1
# Age and gender are not recorded in the sample characteristics
age_row = None
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(x):
# Extract value after colon
if ':' in str(x):
value = str(x).split(':')[1].strip().lower()
# Check if it's kidney cancer
if 'renal cell carcinoma' in value:
return 1
else:
return 0
return None
def convert_age(x):
return None
def convert_gender(x):
return None
# 3. Initial Filtering and Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Clinical Feature Extraction
if trait_row is not None:
# Extract clinical features
clinical_df = geo_select_clinical_features(clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender)
# Preview the processed data
preview = preview_df(clinical_df)
print("Preview of clinical data:")
print(preview)
# Save to CSV
clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from the matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 row IDs
print("First 20 row IDs:")
print(genetic_data.index[:20].tolist())
# These are probe IDs from the Affymetrix human microarray platform
# They need to be mapped to human gene symbols for analysis
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_file_path)
# Display information about the annotation data
print("Column names:")
print(gene_metadata.columns.tolist())
# Look at general data statistics
print("\nData shape:", gene_metadata.shape)
# Preview the first few rows
print("\nPreview of the annotation data:")
print(json.dumps(preview_df(gene_metadata), indent=2))
# 1. Looking at gene annotations, 'ID' matches probe IDs in expression data, and 'Gene Symbol' has corresponding gene symbols
prob_col = 'ID'
gene_col = 'Gene Symbol'
# 2. Get mapping between probe IDs and gene symbols
mapping_df = get_gene_mapping(gene_metadata, prob_col, gene_col)
# 3. Apply gene mapping to convert probe expression to gene expression
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# Early exit if trait values are all NaN
if linked_data[trait].isna().all():
is_biased = True
linked_data = None
else:
# 4. Judge whether features are biased and remove biased demographic features
is_biased = judge_binary_variable_biased(linked_data, trait)
if "Age" in linked_data.columns:
if judge_continuous_variable_biased(linked_data, "Age"):
linked_data = linked_data.drop(columns="Age")
if "Gender" in linked_data.columns:
if judge_binary_variable_biased(linked_data, "Gender"):
linked_data = linked_data.drop(columns="Gender")
# 5. Final validation and save metadata
note = "Dataset from a cancer gene expression study using oligonucleotide microarrays, containing samples of kidney chromophobe tumors and normal tissues."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note=note
)
# 6. Save the linked data only if it's usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |