Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +23 -0
- p3/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/GSE32030.csv +3 -0
- p3/preprocess/Glioblastoma/TCGA.csv +3 -0
- p3/preprocess/Kidney_Chromophobe/TCGA.csv +3 -0
- p3/preprocess/Kidney_Chromophobe/gene_data/GSE19949.csv +3 -0
- p3/preprocess/Kidney_Chromophobe/gene_data/GSE26574.csv +3 -0
- p3/preprocess/Kidney_Chromophobe/gene_data/GSE40911.csv +0 -0
- p3/preprocess/Kidney_Chromophobe/gene_data/GSE40912.csv +0 -0
- p3/preprocess/Kidney_Chromophobe/gene_data/GSE40914.csv +0 -0
- p3/preprocess/Kidney_Chromophobe/gene_data/GSE42977.csv +3 -0
- p3/preprocess/Kidney_Chromophobe/gene_data/GSE68606.csv +3 -0
- p3/preprocess/Kidney_Chromophobe/gene_data/GSE95425.csv +0 -0
- p3/preprocess/Kidney_Chromophobe/gene_data/TCGA.csv +3 -0
- p3/preprocess/Kidney_Clear_Cell_Carcinoma/GSE106757.csv +0 -0
- p3/preprocess/Kidney_Clear_Cell_Carcinoma/GSE117230.csv +3 -0
- p3/preprocess/Kidney_Clear_Cell_Carcinoma/GSE150404.csv +3 -0
- p3/preprocess/Kidney_Clear_Cell_Carcinoma/GSE94321.csv +0 -0
- p3/preprocess/Kidney_Clear_Cell_Carcinoma/GSE95425.csv +0 -0
- p3/preprocess/Kidney_Clear_Cell_Carcinoma/clinical_data/GSE106757.csv +2 -0
- p3/preprocess/Kidney_Clear_Cell_Carcinoma/clinical_data/GSE117230.csv +2 -0
- p3/preprocess/Kidney_Clear_Cell_Carcinoma/clinical_data/GSE119958.csv +2 -0
- p3/preprocess/Kidney_Clear_Cell_Carcinoma/clinical_data/GSE127136.csv +2 -0
- p3/preprocess/Kidney_Clear_Cell_Carcinoma/clinical_data/GSE131027.csv +2 -0
- p3/preprocess/Kidney_Clear_Cell_Carcinoma/clinical_data/GSE150404.csv +4 -0
- p3/preprocess/Kidney_Clear_Cell_Carcinoma/clinical_data/GSE245862.csv +2 -0
- p3/preprocess/Kidney_Clear_Cell_Carcinoma/clinical_data/GSE94321.csv +2 -0
- p3/preprocess/Kidney_Clear_Cell_Carcinoma/clinical_data/GSE95425.csv +2 -0
- p3/preprocess/Kidney_Clear_Cell_Carcinoma/clinical_data/TCGA.csv +946 -0
- p3/preprocess/Kidney_Clear_Cell_Carcinoma/code/GSE102807.py +56 -0
- p3/preprocess/Kidney_Clear_Cell_Carcinoma/code/GSE106757.py +147 -0
- p3/preprocess/Kidney_Clear_Cell_Carcinoma/code/GSE117230.py +170 -0
- p3/preprocess/Kidney_Clear_Cell_Carcinoma/code/GSE119958.py +161 -0
- p3/preprocess/Kidney_Clear_Cell_Carcinoma/code/GSE127136.py +97 -0
- p3/preprocess/Kidney_Clear_Cell_Carcinoma/code/GSE131027.py +162 -0
- p3/preprocess/Kidney_Clear_Cell_Carcinoma/code/GSE150404.py +168 -0
- p3/preprocess/Kidney_Clear_Cell_Carcinoma/code/GSE245862.py +173 -0
- p3/preprocess/Kidney_Clear_Cell_Carcinoma/code/GSE94321.py +162 -0
- p3/preprocess/Kidney_Clear_Cell_Carcinoma/code/GSE95425.py +160 -0
- p3/preprocess/Kidney_Clear_Cell_Carcinoma/code/TCGA.py +127 -0
- p3/preprocess/Kidney_Clear_Cell_Carcinoma/cohort_info.json +1 -0
- p3/preprocess/Kidney_Clear_Cell_Carcinoma/gene_data/GSE106757.csv +0 -0
- p3/preprocess/Kidney_Clear_Cell_Carcinoma/gene_data/GSE117230.csv +3 -0
- p3/preprocess/Kidney_Clear_Cell_Carcinoma/gene_data/GSE119958.csv +3 -0
- p3/preprocess/Kidney_Clear_Cell_Carcinoma/gene_data/GSE131027.csv +3 -0
- p3/preprocess/Kidney_Clear_Cell_Carcinoma/gene_data/GSE150404.csv +3 -0
- p3/preprocess/Kidney_Clear_Cell_Carcinoma/gene_data/GSE245862.csv +1 -0
- p3/preprocess/Kidney_Clear_Cell_Carcinoma/gene_data/GSE94321.csv +0 -0
- p3/preprocess/Kidney_Clear_Cell_Carcinoma/gene_data/GSE95425.csv +0 -0
- p3/preprocess/Kidney_Clear_Cell_Carcinoma/gene_data/TCGA.csv +3 -0
- p3/preprocess/Kidney_Papillary_Cell_Carcinoma/GSE40912.csv +0 -0
.gitattributes
CHANGED
@@ -1830,3 +1830,26 @@ p3/preprocess/Irritable_bowel_syndrome_(IBS)/gene_data/GSE20881.csv filter=lfs d
|
|
1830 |
p3/preprocess/Hypothyroidism/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1831 |
p3/preprocess/Irritable_bowel_syndrome_(IBS)/gene_data/GSE36701.csv filter=lfs diff=lfs merge=lfs -text
|
1832 |
p3/preprocess/Kidney_Chromophobe/GSE26574.csv filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1830 |
p3/preprocess/Hypothyroidism/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1831 |
p3/preprocess/Irritable_bowel_syndrome_(IBS)/gene_data/GSE36701.csv filter=lfs diff=lfs merge=lfs -text
|
1832 |
p3/preprocess/Kidney_Chromophobe/GSE26574.csv filter=lfs diff=lfs merge=lfs -text
|
1833 |
+
p3/preprocess/Kidney_Chromophobe/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1834 |
+
p3/preprocess/Kidney_Chromophobe/gene_data/GSE26574.csv filter=lfs diff=lfs merge=lfs -text
|
1835 |
+
p3/preprocess/Kidney_Chromophobe/gene_data/GSE19949.csv filter=lfs diff=lfs merge=lfs -text
|
1836 |
+
p3/preprocess/Kidney_Chromophobe/gene_data/GSE42977.csv filter=lfs diff=lfs merge=lfs -text
|
1837 |
+
p3/preprocess/Kidney_Chromophobe/gene_data/GSE68606.csv filter=lfs diff=lfs merge=lfs -text
|
1838 |
+
p3/preprocess/Kidney_Chromophobe/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1839 |
+
p3/preprocess/Kidney_Clear_Cell_Carcinoma/GSE150404.csv filter=lfs diff=lfs merge=lfs -text
|
1840 |
+
p3/preprocess/Kidney_Clear_Cell_Carcinoma/GSE117230.csv filter=lfs diff=lfs merge=lfs -text
|
1841 |
+
p3/preprocess/Kidney_Clear_Cell_Carcinoma/gene_data/GSE117230.csv filter=lfs diff=lfs merge=lfs -text
|
1842 |
+
p3/preprocess/Kidney_Clear_Cell_Carcinoma/gene_data/GSE150404.csv filter=lfs diff=lfs merge=lfs -text
|
1843 |
+
p3/preprocess/Kidney_Clear_Cell_Carcinoma/gene_data/GSE131027.csv filter=lfs diff=lfs merge=lfs -text
|
1844 |
+
p3/preprocess/Kidney_Clear_Cell_Carcinoma/gene_data/GSE119958.csv filter=lfs diff=lfs merge=lfs -text
|
1845 |
+
p3/preprocess/Glioblastoma/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1846 |
+
p3/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/GSE32030.csv filter=lfs diff=lfs merge=lfs -text
|
1847 |
+
p3/preprocess/Kidney_Papillary_Cell_Carcinoma/gene_data/GSE19949.csv filter=lfs diff=lfs merge=lfs -text
|
1848 |
+
p3/preprocess/Kidney_Papillary_Cell_Carcinoma/gene_data/GSE42977.csv filter=lfs diff=lfs merge=lfs -text
|
1849 |
+
p3/preprocess/Kidney_Papillary_Cell_Carcinoma/gene_data/GSE68606.csv filter=lfs diff=lfs merge=lfs -text
|
1850 |
+
p3/preprocess/Kidney_stones/GSE123993.csv filter=lfs diff=lfs merge=lfs -text
|
1851 |
+
p3/preprocess/Kidney_stones/GSE73680.csv filter=lfs diff=lfs merge=lfs -text
|
1852 |
+
p3/preprocess/Kidney_Papillary_Cell_Carcinoma/gene_data/GSE68950.csv filter=lfs diff=lfs merge=lfs -text
|
1853 |
+
p3/preprocess/Kidney_Clear_Cell_Carcinoma/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1854 |
+
p3/preprocess/Kidney_stones/gene_data/GSE123993.csv filter=lfs diff=lfs merge=lfs -text
|
1855 |
+
p3/preprocess/Kidney_stones/gene_data/GSE73680.csv filter=lfs diff=lfs merge=lfs -text
|
p3/preprocess/Chronic_obstructive_pulmonary_disease_(COPD)/GSE32030.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0234b2be760ab46a4e9985b78a762f3d70d0f9ccdcaca32d6cff117dc4ce318d
|
3 |
+
size 20487565
|
p3/preprocess/Glioblastoma/TCGA.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:988fd888c18b20a4145c7ac5b2a51a3ea874d83da6550c507b010f7975086758
|
3 |
+
size 51571961
|
p3/preprocess/Kidney_Chromophobe/TCGA.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dcb54b8076bce2ba5365625239a151b0d30e2f2365efaaba4efd7513317a2455
|
3 |
+
size 27390526
|
p3/preprocess/Kidney_Chromophobe/gene_data/GSE19949.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:818e2f301effb2abfc1b8373a01958130b500800fae159d49bacb6539f3958cd
|
3 |
+
size 32429468
|
p3/preprocess/Kidney_Chromophobe/gene_data/GSE26574.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f3622686d4bfd37698627186ebdbf1d488d3de8de56d3c7bd7930045926f220
|
3 |
+
size 19199125
|
p3/preprocess/Kidney_Chromophobe/gene_data/GSE40911.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Kidney_Chromophobe/gene_data/GSE40912.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Kidney_Chromophobe/gene_data/GSE40914.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Kidney_Chromophobe/gene_data/GSE42977.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ee4aba8ed3943a5e7f98022325bcf90252f7fb056f558e0e99dd7f361acd56f8
|
3 |
+
size 24576182
|
p3/preprocess/Kidney_Chromophobe/gene_data/GSE68606.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:80af5c124e061b70ddeb4b6ac99da9ede8c57b0dc32e47190d69874a7888006d
|
3 |
+
size 17468907
|
p3/preprocess/Kidney_Chromophobe/gene_data/GSE95425.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Kidney_Chromophobe/gene_data/TCGA.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f0f63a99ae9f421825dd15b43b79927382ef7c61cb5dc3bcf0918eb1ee9431f
|
3 |
+
size 27389865
|
p3/preprocess/Kidney_Clear_Cell_Carcinoma/GSE106757.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Kidney_Clear_Cell_Carcinoma/GSE117230.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c4b78e43fe61ac6b29f510d7e3f36358843edf5acc2fb65ae0b516aa0e0db0b4
|
3 |
+
size 11964821
|
p3/preprocess/Kidney_Clear_Cell_Carcinoma/GSE150404.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:35794df62686b92962d544339002f55e5580a9e7334156a2c996e26003ae9ee3
|
3 |
+
size 16760269
|
p3/preprocess/Kidney_Clear_Cell_Carcinoma/GSE94321.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Kidney_Clear_Cell_Carcinoma/GSE95425.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Kidney_Clear_Cell_Carcinoma/clinical_data/GSE106757.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM2849909,GSM2849910,GSM2849911,GSM2849912,GSM2849913,GSM2849914,GSM2849915,GSM2849916,GSM2849917,GSM2849918,GSM2849919,GSM2849920,GSM2849921,GSM2849922,GSM2849923,GSM2849924,GSM2849925,GSM2849926,GSM2849927,GSM2849928,GSM2849929,GSM2849930,GSM2849931,GSM2849932,GSM2849933,GSM2849934,GSM2849935,GSM2849936,GSM2849937,GSM2849938,GSM2849939,GSM2849940,GSM2849941,GSM2849942,GSM2849943,GSM2849944
|
2 |
+
Kidney_Clear_Cell_Carcinoma,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
p3/preprocess/Kidney_Clear_Cell_Carcinoma/clinical_data/GSE117230.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM3288712,GSM3288713,GSM3288714,GSM3288715,GSM3288716,GSM3288717,GSM3288718,GSM3288719,GSM3288720,GSM3288721,GSM3288722,GSM3288723,GSM3288724,GSM3288725,GSM3288726,GSM3288727,GSM3288728,GSM3288729,GSM3288730,GSM3288731,GSM3288732,GSM3288733,GSM3288734,GSM3288735,GSM3288736,GSM3288737,GSM3288738,GSM3288739,GSM3288740,GSM3288741,GSM3288742,GSM3288743,GSM3288744,GSM3288746,GSM3288747,GSM3288749,GSM3288751,GSM3288753,GSM3288755,GSM3288757
|
2 |
+
Kidney_Clear_Cell_Carcinoma,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
p3/preprocess/Kidney_Clear_Cell_Carcinoma/clinical_data/GSE119958.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM3389407,GSM3389408,GSM3389409,GSM3389410,GSM3389411,GSM3389412,GSM3389413,GSM3389414,GSM3389415,GSM3389416,GSM3389417,GSM3389418,GSM3389419,GSM3389420,GSM3389421,GSM3389422,GSM3389423,GSM3389424,GSM3389425,GSM3389426,GSM3389427,GSM3389428,GSM3389429,GSM3389430,GSM3389431,GSM3389432,GSM3389433,GSM3389434,GSM3389435,GSM3389436,GSM3389437,GSM3389438,GSM3389439,GSM3389440,GSM3389441,GSM3389442,GSM3389443,GSM3389444,GSM3389445,GSM3389446,GSM3389447,GSM3389448,GSM3389449,GSM3389450,GSM3389451,GSM3389452,GSM3389453,GSM3389454,GSM3389455,GSM3389456,GSM3389457,GSM3389458,GSM3389459,GSM3389460,GSM3389461,GSM3389462,GSM3389463,GSM3389464,GSM3389465,GSM3389466,GSM3389467,GSM3389468,GSM3389469,GSM3389470,GSM3389471,GSM3389472,GSM3389473,GSM3389474,GSM3389475,GSM3389476,GSM3389477,GSM3389478,GSM3389479,GSM3389480,GSM3389481,GSM3389482,GSM3389483,GSM3389484,GSM3389485,GSM3389486,GSM3389487,GSM3389488,GSM3389489,GSM3389490,GSM3389491,GSM3389492,GSM3389493,GSM3389494,GSM3389495,GSM3389496,GSM3389497,GSM3389498,GSM3389499,GSM3389500,GSM3389501,GSM3389502,GSM3389503,GSM3389504,GSM3389505,GSM3389506
|
2 |
+
Kidney_Clear_Cell_Carcinoma,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0
|
p3/preprocess/Kidney_Clear_Cell_Carcinoma/clinical_data/GSE127136.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM3625775,GSM3625776,GSM3625777,GSM3625778,GSM3625779,GSM3625780,GSM3625781,GSM3625782,GSM3625783,GSM3625784,GSM3625785,GSM3625786,GSM3625787,GSM3625788,GSM3625789,GSM3625790,GSM3625791,GSM3625792,GSM3625793,GSM3625794,GSM3625795,GSM3625796,GSM3625797,GSM3625798,GSM3625799,GSM3625800,GSM3625801,GSM3625802,GSM3625803,GSM3625804,GSM3625805,GSM3625806,GSM3625807,GSM3625808,GSM3625809,GSM3625810,GSM3625811,GSM3625812,GSM3625813,GSM3625814,GSM3625815,GSM3625816,GSM3625817,GSM3625818,GSM3625819,GSM3625820,GSM3625821,GSM3625822,GSM3625823,GSM3625824,GSM3625825,GSM3625826,GSM3625827,GSM3625828,GSM3625829,GSM3625830,GSM3625831,GSM3625832,GSM3625833,GSM3625834,GSM3625835,GSM3625836,GSM3625837,GSM3625838,GSM3625839,GSM3625840,GSM3625841,GSM3625842,GSM3625843,GSM3625844,GSM3625845,GSM3625846,GSM3625847,GSM3625848,GSM3625849,GSM3625850,GSM3625851,GSM3625852,GSM3625853,GSM3625854,GSM3625855,GSM3625856,GSM3625857,GSM3625858,GSM3625859,GSM3625860,GSM3625861,GSM3625862,GSM3625863,GSM3625864,GSM3625865,GSM3625866,GSM3625867,GSM3625868,GSM3625869,GSM3625870,GSM3625871,GSM3625872,GSM3625873,GSM3625874,GSM3625875,GSM3625876,GSM3625877,GSM3625878,GSM3625879,GSM3625880,GSM3625881,GSM3625882,GSM3625883,GSM3625884,GSM3625885,GSM3625886,GSM3625887,GSM3625888,GSM3625889,GSM3625890,GSM3625891,GSM3625892,GSM3625893,GSM3625894,GSM3625895,GSM3625896,GSM3625897,GSM3625898,GSM3625899,GSM3625900,GSM3625901,GSM3625902,GSM3625903,GSM3625904,GSM3625905,GSM3625906,GSM3625907,GSM3625908,GSM3625909,GSM3625910,GSM3625911,GSM3625912,GSM3625913,GSM3625914,GSM3625915,GSM3625916,GSM3625917,GSM3625918,GSM3625919,GSM3625920,GSM3625921,GSM3625922,GSM3625923,GSM3625924,GSM3625925,GSM3625926,GSM3625927,GSM3625928,GSM3625929,GSM3625930,GSM3625931,GSM3625932,GSM3625933,GSM3625934,GSM3625935,GSM3625936,GSM3625937,GSM3625938,GSM3625939,GSM3625940,GSM3625941,GSM3625942,GSM3625943,GSM3625944,GSM3625945,GSM3625946,GSM3625947,GSM3625948,GSM3625949,GSM3625950,GSM3625951,GSM3625952,GSM3625953,GSM3625954,GSM3625955,GSM3625956,GSM3625957,GSM3625958,GSM3625959,GSM3625960,GSM3625961,GSM3625962,GSM3625963,GSM3625964,GSM3625965,GSM3625966,GSM3625967,GSM3625968,GSM3625969,GSM3625970,GSM3625971,GSM3625972,GSM3625973,GSM3625974,GSM3625975,GSM3625976,GSM3625977,GSM3625978,GSM3625979,GSM3625980,GSM3625981,GSM3625982,GSM3625983,GSM3625984,GSM3625985,GSM3625986,GSM3625987,GSM3625988,GSM3625989,GSM3625990,GSM3625991,GSM3625992,GSM3625993,GSM3625994,GSM3625995,GSM3625996,GSM3625997,GSM3625998,GSM3625999,GSM3626000,GSM3626001,GSM3626002,GSM3626003,GSM3626004,GSM3626005,GSM3626006,GSM3626007,GSM3626008,GSM3626009,GSM3626010,GSM3626011,GSM3626012,GSM3626013,GSM3626014,GSM3626015,GSM3626016,GSM3626017,GSM3626018,GSM3626019,GSM3626020,GSM3626021,GSM3626022,GSM3626023,GSM3626024,GSM3626025,GSM3626026,GSM3626027,GSM3626028,GSM3626029,GSM3626030,GSM3626031,GSM3626032,GSM3626033,GSM3626034,GSM3626035,GSM3626036,GSM3626037,GSM3626038,GSM3626039,GSM3626040,GSM3626041,GSM3626042,GSM3626043,GSM3626044,GSM3626045,GSM3626046,GSM3626047,GSM3626048,GSM3626049,GSM3626050,GSM3626051,GSM3626052,GSM3626053,GSM3626054,GSM3626055,GSM3626056,GSM3626057,GSM3626058,GSM3626059,GSM3626060,GSM3626061,GSM3626062,GSM3626063,GSM3626064,GSM3626065,GSM3626066,GSM3626067,GSM3626068,GSM3626069,GSM3626070,GSM3626071,GSM3626072,GSM3626073,GSM3626074,GSM3626075,GSM3626076,GSM3626077,GSM3626078,GSM3626079,GSM3626080,GSM3626081,GSM3626082,GSM3626083,GSM3626084,GSM3626085,GSM3626086,GSM3626087,GSM3626088,GSM3626089,GSM3626090,GSM3626091,GSM3626092,GSM3626093,GSM3626094,GSM3626095,GSM3626096,GSM3626097,GSM3626098,GSM3626099,GSM3626100,GSM3626101,GSM3626102,GSM3626103,GSM3626104,GSM3626105,GSM3626106,GSM3626107,GSM3626108,GSM3626109,GSM3626110,GSM3626111,GSM3626112,GSM3626113,GSM3626114,GSM3626115,GSM3626116,GSM3626117,GSM3626118,GSM3626119,GSM3626120,GSM3626121,GSM3626122,GSM3626123,GSM3626124,GSM3626125,GSM3626126,GSM3626127,GSM3626128,GSM3626129,GSM3626130,GSM3626131,GSM3626132,GSM3626133,GSM3626134,GSM3626135,GSM3626136,GSM3626137,GSM3626138,GSM3626139,GSM3626140,GSM3626141,GSM3626142,GSM3626143,GSM3626144,GSM3626145,GSM3626146,GSM3626147,GSM3626148,GSM3626149,GSM3626150,GSM3626151,GSM3626152,GSM3626153,GSM3626154,GSM3626155,GSM3626156,GSM3626157,GSM3626158,GSM3626159,GSM3626160,GSM3626161,GSM3626162,GSM3626163,GSM3626164,GSM3626165,GSM3626166,GSM3626167,GSM3626168,GSM3626169,GSM3626170,GSM3626171,GSM3626172,GSM3626173,GSM3626174,GSM3626175,GSM3626176,GSM3626177,GSM3626178,GSM3626179,GSM3626180,GSM3626181,GSM3626182,GSM3626183,GSM3626184,GSM3626185,GSM3626186,GSM3626187,GSM3626188,GSM3626189,GSM3626190,GSM3626191,GSM3626192,GSM3626193,GSM3626194,GSM3626195,GSM3626196,GSM3626197,GSM3626198,GSM3626199,GSM3626200,GSM3626201,GSM3626202,GSM3626203,GSM3626204,GSM3626205,GSM3626206,GSM3626207,GSM3626208,GSM3626209,GSM3626210,GSM3626211,GSM3626212,GSM3626213,GSM3626214,GSM3626215,GSM3626216,GSM3626217,GSM3626218,GSM3626219,GSM3626220,GSM3626221,GSM3626222,GSM3626223,GSM3626224,GSM3626225,GSM3626226,GSM3626227,GSM3626228,GSM3626229,GSM3626230,GSM3626231,GSM3626232,GSM3626233,GSM3626234,GSM3626235,GSM3626236,GSM3626237,GSM3626238,GSM3626239,GSM3626240,GSM3626241,GSM3626242,GSM3626243,GSM3626244,GSM3626245,GSM3626246,GSM3626247,GSM3626248,GSM3626249,GSM3626250,GSM3626251,GSM3626252,GSM3626253,GSM3626254,GSM3626255,GSM3626256,GSM3626257,GSM3626258,GSM3626259,GSM3626260,GSM3626261,GSM3626262,GSM3626263,GSM3626264,GSM3626265,GSM3626266,GSM3626267,GSM3626268,GSM3626269,GSM3626270,GSM3626271,GSM3626272,GSM3626273,GSM3626274,GSM3626275,GSM3626276,GSM3626277,GSM3626278,GSM3626279,GSM3626280,GSM3626281,GSM3626282,GSM3626283,GSM3626284,GSM3626285,GSM3626286,GSM3626287,GSM3626288,GSM3626289,GSM3626290,GSM3626291,GSM3626292,GSM3626293,GSM3626294,GSM3626295,GSM3626296,GSM3626297,GSM3626298,GSM3626299,GSM3626300,GSM3626301,GSM3626302,GSM3626303,GSM3626304,GSM3626305,GSM3626306,GSM3626307,GSM3626308,GSM3626309,GSM3626310,GSM3626311,GSM3626312,GSM3626313,GSM3626314,GSM3626315,GSM3626316,GSM3626317,GSM3626318,GSM3626319,GSM3626320,GSM3626321,GSM3626322,GSM3626323,GSM3626324,GSM3626325,GSM3626326,GSM3626327,GSM3626328,GSM3626329,GSM3626330,GSM3626331,GSM3626332,GSM3626333,GSM3626334,GSM3626335,GSM3626336,GSM3626337,GSM3626338,GSM3626339,GSM3626340,GSM3626341,GSM3626342,GSM3626343,GSM3626344,GSM3626345,GSM3626346,GSM3626347,GSM3626348,GSM3626349,GSM3626350,GSM3626351,GSM3626352,GSM3626353,GSM3626354,GSM3626355,GSM3626356,GSM3626357,GSM3626358,GSM3626359,GSM3626360,GSM3626361,GSM3626362,GSM3626363,GSM3626364,GSM3626365,GSM3626366,GSM3626367,GSM3626368,GSM3626369,GSM3626370,GSM3626371,GSM3626372,GSM3626373,GSM3626374,GSM3626375,GSM3626376,GSM3626377,GSM3626378,GSM3626379,GSM3626380,GSM3626381,GSM3626382,GSM3626383,GSM3626384,GSM3626385,GSM3626386,GSM3626387,GSM3626388,GSM3626389,GSM3626390,GSM3626391,GSM3626392,GSM3626393,GSM3626394,GSM3626395,GSM3626396,GSM3626397,GSM3626398,GSM3626399,GSM3626400,GSM3626401,GSM3626402,GSM3626403,GSM3626404,GSM3626405,GSM3626406,GSM3626407,GSM3626408,GSM3626409,GSM3626410,GSM3626411,GSM3626412,GSM3626413,GSM3626414,GSM3626415,GSM3626416,GSM3626417,GSM3626418,GSM3626419,GSM3626420,GSM3626421,GSM3626422,GSM3626423,GSM3626424,GSM3626425,GSM3626426,GSM3626427,GSM3626428,GSM3626429,GSM3626430,GSM3626431,GSM3626432,GSM3626433,GSM3626434,GSM3626435,GSM3626436,GSM3626437,GSM3626438,GSM3626439,GSM3626440,GSM3626441,GSM3626442,GSM3626443,GSM3626444,GSM3626445,GSM3626446,GSM3626447,GSM3626448,GSM3626449,GSM3626450,GSM3626451,GSM3626452,GSM3626453,GSM3626454,GSM3626455,GSM3626456,GSM3626457,GSM3626458,GSM3626459,GSM3626460,GSM3626461,GSM3626462,GSM3626463,GSM3626464,GSM3626465,GSM3626466,GSM3626467,GSM3626468,GSM3626469,GSM3626470,GSM3626471,GSM3626472,GSM3626473,GSM3626474,GSM3626475,GSM3626476,GSM3626477,GSM3626478,GSM3626479,GSM3626480,GSM3626481,GSM3626482,GSM3626483,GSM3626484,GSM3626485,GSM3626486,GSM3626487,GSM3626488,GSM3626489,GSM3626490,GSM3626491,GSM3626492,GSM3626493,GSM3626494,GSM3626495,GSM3626496,GSM3626497,GSM3626498,GSM3626499,GSM3626500,GSM3626501,GSM3626502,GSM3626503,GSM3626504,GSM3626505,GSM3626506,GSM3626507,GSM3626508,GSM3626509,GSM3626510,GSM3626511,GSM3626512,GSM3626513,GSM3626514,GSM3626515,GSM3626516,GSM3626517,GSM3626518,GSM3626519,GSM3626520,GSM3626521,GSM3626522,GSM3626523,GSM3626524,GSM3626525,GSM3626526,GSM3626527,GSM3626528,GSM3626529,GSM3626530,GSM3626531,GSM3626532,GSM3626533,GSM3626534,GSM3626535,GSM3626536,GSM3626537,GSM3626538,GSM3626539,GSM3626540,GSM3626541,GSM3626542,GSM3626543,GSM3626544,GSM3626545,GSM3626546,GSM3626547,GSM3626548,GSM3626549,GSM3626550,GSM3626551,GSM3626552,GSM3626553,GSM3626554,GSM3626555,GSM3626556,GSM3626557,GSM3626558,GSM3626559,GSM3626560,GSM3626561,GSM3626562,GSM3626563,GSM3626564,GSM3626565,GSM3626566,GSM3626567,GSM3626568,GSM3626569,GSM3626570,GSM3626571,GSM3626572,GSM3626573,GSM3626574,GSM3626575,GSM3626576,GSM3626577,GSM3626578,GSM3626579,GSM3626580,GSM3626581,GSM3626582,GSM3626583,GSM3626584,GSM3626585,GSM3626586,GSM3626587,GSM3626588,GSM3626589,GSM3626590,GSM3626591,GSM3626592,GSM3626593,GSM3626594,GSM3626595,GSM3626596,GSM3626597,GSM3626598,GSM3626599,GSM3626600,GSM3626601,GSM3626603,GSM3626604,GSM3626606,GSM3626607,GSM3626608,GSM3626609,GSM3626610,GSM3626611,GSM3626612,GSM3626613,GSM3626614,GSM3626615,GSM3626616,GSM3626617,GSM3626618,GSM3626619,GSM3626620,GSM3626621,GSM3626622,GSM3626623,GSM3626624,GSM3626625,GSM3626626,GSM3626627,GSM3626628,GSM3626629,GSM3626630,GSM3626631,GSM3626632,GSM3626633,GSM3626634,GSM3626635,GSM3626636,GSM3626637,GSM3626638,GSM3626639,GSM3626640,GSM3626641,GSM3626642,GSM3626643,GSM3626644,GSM3626645,GSM3626646,GSM3626647,GSM3626648,GSM3626649,GSM3626650,GSM3626651,GSM3626652,GSM3626653,GSM3626654,GSM3626655,GSM3626656,GSM3626657,GSM3626658,GSM3626659,GSM3626660,GSM3626661,GSM3626662,GSM3626663,GSM3626664,GSM3626665,GSM3626666,GSM3626667,GSM3626668,GSM3626669,GSM3626670,GSM3626671,GSM3626672,GSM3626673,GSM3626674,GSM3626675,GSM3626676,GSM3626677,GSM3626678,GSM3626679,GSM3626680,GSM3626681,GSM3626682,GSM3626683,GSM3626684,GSM3626685,GSM3626686,GSM3626687,GSM3626688,GSM3626689,GSM3626690,GSM3626691,GSM3626692,GSM3626693,GSM3626694,GSM3626695,GSM3626696,GSM3626697,GSM3626698,GSM3626699,GSM3626700,GSM3626701,GSM3626702,GSM3626703,GSM3626704,GSM3626705,GSM3626706,GSM3626707,GSM3626708,GSM3626709,GSM3626710,GSM3626711,GSM3626712,GSM3626713,GSM3626714,GSM3626715,GSM3626716,GSM3626717,GSM3626718,GSM3626719,GSM3626720,GSM3626721,GSM3626722,GSM3626723,GSM3626724,GSM3626725,GSM3626726,GSM3626727,GSM3626728,GSM3626729,GSM3626730,GSM3626731,GSM3626732,GSM3626733,GSM3626734,GSM3626735,GSM3626736,GSM3626737,GSM3626738,GSM3626739,GSM3626740,GSM3626741,GSM3626742,GSM3626743,GSM3626744,GSM3626745,GSM3626746,GSM3626747,GSM3626748,GSM3626749,GSM3626750,GSM3626751,GSM3626752,GSM3626753,GSM3626754,GSM3626755,GSM3626756,GSM3626757,GSM3626758,GSM3626759,GSM3626760,GSM3626761,GSM3626762,GSM3626763,GSM3626764,GSM3626765,GSM3626766,GSM3626767,GSM3626768,GSM3626769,GSM3626770,GSM3626771,GSM3626772,GSM3626773,GSM3626774,GSM3626775,GSM3626776,GSM3626777,GSM3626778,GSM3626779,GSM3626780,GSM3626781,GSM3626782,GSM3626783,GSM3626784,GSM3626785,GSM3626786,GSM3626787,GSM3626788,GSM3626789,GSM3626790,GSM3626791,GSM3626792,GSM3626793,GSM3626794,GSM3626795,GSM3626796,GSM3626797,GSM3626798,GSM3626799,GSM3626800,GSM3626801,GSM3626802,GSM3626803,GSM3626804,GSM3626805,GSM3626806,GSM3626807,GSM3626808,GSM3626809,GSM3626810,GSM3626811,GSM3626812,GSM3626813,GSM3626814,GSM3626815,GSM3626816,GSM3626817,GSM3626818,GSM3626819,GSM3626820,GSM3626821,GSM3626822,GSM3626823,GSM3626824,GSM3626825,GSM3626826,GSM3626827,GSM3626828,GSM3626829,GSM3626830,GSM3626831,GSM3626832,GSM3626833,GSM3626834,GSM3626835,GSM3626836,GSM3626837,GSM3626838,GSM3626839,GSM3626840,GSM3626841,GSM3626842,GSM3626843,GSM3626844,GSM3626845,GSM3626846,GSM3626847,GSM3626848,GSM3626849,GSM3626850,GSM3626851,GSM3626852,GSM3626853,GSM3626854,GSM3626855,GSM3626856,GSM3626857,GSM3626858,GSM3626859,GSM3626860,GSM3626861,GSM3626862,GSM3626863,GSM3626864,GSM3626865,GSM3626866,GSM3626867,GSM3626868,GSM3626869,GSM3626870,GSM3626871,GSM3626872,GSM3626873,GSM3626874,GSM3626875,GSM3626876,GSM3626877,GSM3626878,GSM3626879,GSM3626880,GSM3626881,GSM3626882,GSM3626883,GSM3626884,GSM3626885,GSM3626886,GSM3626887,GSM3626888,GSM3626889,GSM3626890,GSM3626891,GSM3626892,GSM3626893,GSM3626894,GSM3626895,GSM3626896,GSM3626897,GSM3626898,GSM3626899,GSM3626900,GSM3626901,GSM3626902,GSM3626903,GSM3626904,GSM3626905,GSM3626906,GSM3626907,GSM3626908,GSM3626909,GSM3626910,GSM3626911,GSM3626912,GSM3626913,GSM3626914,GSM3626915,GSM3626916,GSM3626917,GSM3626918,GSM3626919,GSM3626920,GSM3626921,GSM3626922,GSM3626923,GSM3626924,GSM3626925,GSM3626926,GSM3626927,GSM3626928,GSM3626929,GSM3626930,GSM3626931,GSM3626932,GSM3626933,GSM3626934,GSM3626935,GSM3626936,GSM3626937,GSM3626938,GSM3626939,GSM3626940,GSM3626941,GSM3626942,GSM3626943,GSM3626944,GSM3626945,GSM3626946,GSM3626947,GSM3626948,GSM3626949,GSM3626950,GSM3626951,GSM3626952,GSM3626953,GSM3626954,GSM3626955,GSM3626956,GSM3626957,GSM3626958,GSM3626959,GSM3626960,GSM3626961,GSM3626962,GSM3626963,GSM3626964,GSM3626965,GSM3626966,GSM3626967,GSM3626968,GSM3626969,GSM3626970,GSM3626971,GSM3626972,GSM3626973,GSM3626974,GSM3626975,GSM3626976,GSM3626977,GSM3626978,GSM3626979,GSM3626980,GSM3626981,GSM3626982,GSM3626983,GSM3626984,GSM3626985,GSM3626986,GSM3626987,GSM3626988,GSM3626989,GSM3626990,GSM3626991,GSM3626992,GSM3626993,GSM3626994,GSM3626995,GSM3626996,GSM3626997,GSM3626998,GSM3626999,GSM3627000,GSM3627001,GSM3627002,GSM3627003,GSM3627004,GSM3627005,GSM3627006,GSM3627007,GSM3627008,GSM3627009,GSM3627010,GSM3627011,GSM3627012,GSM3627013,GSM3627014,GSM3627015,GSM3627016,GSM3627017,GSM3627018,GSM3627019,GSM3627020,GSM3627021,GSM3627022,GSM3627023,GSM3627024,GSM3627025,GSM3627026,GSM3627027,GSM3627028,GSM3627029,GSM3627030,GSM3627031,GSM3627032,GSM3627033,GSM3627034,GSM3627035,GSM3627036,GSM3627037,GSM3627038,GSM3627039,GSM3627040,GSM3627041,GSM3627042,GSM3627043,GSM3627044,GSM3627045,GSM3627046,GSM3627047,GSM3627048,GSM3627049,GSM3627050,GSM3627051,GSM3627052,GSM3627053,GSM3627054,GSM3627055,GSM3627056,GSM3627057,GSM3627058,GSM3627059,GSM3627060,GSM3627061,GSM3627062,GSM3627063,GSM3627064,GSM3627065,GSM3627066,GSM3627067,GSM3627068,GSM3627069,GSM3627070,GSM3627071,GSM3627072,GSM3627073,GSM3627074,GSM3627075,GSM3627076,GSM3627077,GSM3627078,GSM3627079,GSM3627080,GSM3627081,GSM3627082,GSM3627083,GSM3627084,GSM3627085,GSM3627086,GSM3627087,GSM3627088,GSM3627089,GSM3627090,GSM3627091,GSM3627092,GSM3627093,GSM3627094,GSM3627095,GSM3627096,GSM3627097,GSM3627098,GSM3627099,GSM3627100,GSM3627101,GSM3627102,GSM3627103,GSM3627104,GSM3627105,GSM3627106,GSM3627107,GSM3627108,GSM3627109,GSM3627110,GSM3627111,GSM3627112,GSM3627113,GSM3627114,GSM3627115,GSM3627116,GSM3627117,GSM3627118,GSM3627119,GSM3627120,GSM3627121,GSM3627122,GSM3627123,GSM3627124,GSM3627125,GSM3627126,GSM3627127,GSM3627128,GSM3627129,GSM3627130,GSM3627131,GSM3627132,GSM3627133,GSM3627134,GSM3627135,GSM3627136,GSM3627137,GSM3627138,GSM3627139,GSM3627140,GSM3627141,GSM3627142,GSM3627143,GSM3627144,GSM3627145,GSM3627146,GSM3627147,GSM3627148,GSM3627149,GSM3627150,GSM3627151,GSM3627152,GSM3627153,GSM3627154,GSM3627155,GSM3627156,GSM3627157,GSM3627158,GSM3627159,GSM3627160,GSM3627161,GSM3627162,GSM3627163,GSM3627164,GSM3627165,GSM3627166,GSM3627167,GSM3627168,GSM3627169,GSM3627170,GSM3627171,GSM3627172,GSM3627173,GSM3627174,GSM3627175,GSM3627176,GSM3627177,GSM3627178,GSM3627179,GSM3627180,GSM3627181,GSM3627182,GSM3627183,GSM3627184,GSM3627185,GSM3627186,GSM3627187,GSM3627188,GSM3627189,GSM3627190,GSM3627191,GSM3627192,GSM3627193,GSM3627194,GSM3627195,GSM3627196,GSM3627197,GSM3627198,GSM3627199,GSM3627200,GSM3627201,GSM3627202,GSM3627203,GSM3627204,GSM3627205,GSM3627206,GSM3627207,GSM3627208,GSM3627209,GSM3627210,GSM3627211,GSM3627212,GSM3627213,GSM3627214,GSM3627215,GSM3627216,GSM3627217,GSM3627218,GSM3627219,GSM3627220,GSM3627221,GSM3627222,GSM3627223,GSM3627224,GSM3627225,GSM3627226,GSM3627227,GSM3627228,GSM3627229,GSM3627230,GSM3627231,GSM3627232,GSM3627233,GSM3627234,GSM3627235,GSM3627236,GSM3627237,GSM3627238,GSM3627239,GSM3627240,GSM3627241,GSM3627242,GSM3627243,GSM3627244,GSM3627245,GSM3627246,GSM3627247,GSM3627248,GSM3627249,GSM3627250,GSM3627251,GSM3627252,GSM3627253,GSM3627254,GSM3627255,GSM3627256,GSM3627257,GSM3627258,GSM3627259,GSM3627260,GSM3627261,GSM3627262,GSM3627263,GSM3627264,GSM3627265,GSM3627266,GSM3627267,GSM3627268,GSM3627269,GSM3627270,GSM3627271,GSM3627272,GSM3627273,GSM3627274,GSM3627275,GSM3627276,GSM3627277,GSM3627278,GSM3627279,GSM3627280,GSM3627281,GSM3627282,GSM3627283,GSM3627284,GSM3627285,GSM3627286,GSM3627287,GSM3627288,GSM3627289,GSM3627290,GSM3627291,GSM3627292,GSM3627293,GSM3627294,GSM3627295,GSM3627296,GSM3627297,GSM3627298,GSM3627299,GSM3627300,GSM3627301,GSM3627302,GSM3627303,GSM3627304,GSM3627305,GSM3627306,GSM3627307,GSM3627308,GSM3627309,GSM3627310,GSM3627311,GSM3627312,GSM3627313,GSM3627314,GSM3627315,GSM3627316,GSM3627317,GSM3627318,GSM3627319,GSM3627320,GSM3627321,GSM3627322,GSM3627323,GSM3627324,GSM3627325,GSM3627326,GSM3627327,GSM3627328,GSM3627329,GSM3627330,GSM3627331,GSM3627332,GSM3627333,GSM3627334,GSM3627335,GSM3627336,GSM3627337,GSM3627338,GSM3627339,GSM3627340,GSM3627341,GSM3627342,GSM3627343,GSM3627344,GSM3627345,GSM3627346,GSM3627347,GSM3627348,GSM3627349,GSM3627350,GSM3627351,GSM3627352,GSM3627353,GSM3627354,GSM3627355,GSM3627356,GSM3627357,GSM3627358,GSM3627359,GSM3627360,GSM3627361,GSM3627362,GSM3627363,GSM3627364,GSM3627365,GSM3627366,GSM3627367,GSM3627368,GSM3627369,GSM3627370,GSM3627371,GSM3627372,GSM3627373,GSM3627374,GSM3627375,GSM3627376,GSM3627377,GSM3627378,GSM3627379,GSM3627380,GSM3627381,GSM3627382,GSM3627383,GSM3627384,GSM3627385,GSM3627386,GSM3627387,GSM3627388,GSM3627389,GSM3627390,GSM3627391,GSM3627392,GSM3627393,GSM3627394,GSM3627395,GSM3627396,GSM3627397,GSM3627398,GSM3627399,GSM3627400,GSM3627401,GSM3627402,GSM3627403,GSM3627404,GSM3627405,GSM3627406,GSM3627407,GSM3627408,GSM3627409,GSM3627410,GSM3627411,GSM3627412,GSM3627413,GSM3627414,GSM3627415,GSM3627416,GSM3627417,GSM3627418,GSM3627419,GSM3627420,GSM3627421,GSM3627422,GSM3627423,GSM3627424,GSM3627425,GSM3627426,GSM3627427,GSM3627428,GSM3627429,GSM3627430,GSM3627431,GSM3627432,GSM3627433,GSM3627434,GSM3627435,GSM3627436,GSM3627437,GSM3627438,GSM3627439,GSM3627440,GSM3627441,GSM3627442,GSM3627443,GSM3627444,GSM3627445,GSM3627446,GSM3627447,GSM3627448,GSM3627449,GSM3627450,GSM3627451,GSM3627452,GSM3627453,GSM3627454,GSM3627455,GSM3627456,GSM3627457,GSM3627458,GSM3627459,GSM3627460,GSM3627461,GSM3627462,GSM3627463,GSM3627464,GSM3627465,GSM3627466,GSM3627467,GSM3627468,GSM3627469,GSM3627470,GSM3627471,GSM3627472,GSM3627473,GSM3627474,GSM3627475,GSM3627476,GSM3627477,GSM3627478,GSM3627479,GSM3627480,GSM3627481,GSM3627482,GSM3627483,GSM3627484,GSM3627485,GSM3627486,GSM3627487,GSM3627488,GSM3627489,GSM3627490,GSM3627491,GSM3627492,GSM3627493,GSM3627494,GSM3627495,GSM3627496,GSM3627497,GSM3627498,GSM3627499,GSM3627500,GSM3627501,GSM3627502,GSM3627503,GSM3627504,GSM3627505,GSM3627506,GSM3627507,GSM3627508,GSM3627509,GSM3627510,GSM3627511,GSM3627512,GSM3627513,GSM3627514,GSM3627515,GSM3627516,GSM3627517,GSM3627518,GSM3627519,GSM3627520,GSM3627521,GSM3627522,GSM3627523,GSM3627524,GSM3627525,GSM3627526,GSM3627527,GSM3627528,GSM3627529,GSM3627530,GSM3627531,GSM3627532,GSM3627533,GSM3627534,GSM3627535,GSM3627536,GSM3627537,GSM3627538,GSM3627539,GSM3627540,GSM3627541,GSM3627542,GSM3627543,GSM3627544,GSM3627545,GSM3627546,GSM3627547,GSM3627548,GSM3627549,GSM3627550,GSM3627551,GSM3627552,GSM3627553,GSM3627554,GSM3627555,GSM3627556,GSM3627557,GSM3627558,GSM3627559,GSM3627560,GSM3627561,GSM3627562,GSM3627563,GSM3627564,GSM3627565,GSM3627566,GSM3627567,GSM3627568,GSM3627569,GSM3627570,GSM3627571,GSM3627572,GSM3627573,GSM3627574,GSM3627575,GSM3627576,GSM3627577,GSM3627578,GSM3627579,GSM3627580,GSM3627581,GSM3627582,GSM3627583,GSM3627584,GSM3627585,GSM3627586,GSM3627587,GSM3627588,GSM3627589,GSM3627590,GSM3627591,GSM3627592,GSM3627593,GSM3627594,GSM3627595,GSM3627596,GSM3627597,GSM3627598,GSM3627599,GSM3627600,GSM3627601,GSM3627602,GSM3627603,GSM3627604,GSM3627605,GSM3627606,GSM3627607,GSM3627608,GSM3627609,GSM3627610,GSM3627611,GSM3627612,GSM3627613,GSM3627614,GSM3627615,GSM3627616,GSM3627617,GSM3627618,GSM3627619,GSM3627620,GSM3627621,GSM3627622,GSM3627623,GSM3627624,GSM3627625,GSM3627626,GSM3627627,GSM3627628,GSM3627629,GSM3627630,GSM3627631,GSM3627632,GSM3627633,GSM3627634,GSM3627635,GSM3627636,GSM3627637,GSM3627638,GSM3627639,GSM3627640,GSM3627641,GSM3627642,GSM3627643,GSM3627644,GSM3627645,GSM3627646,GSM3627647,GSM3627648,GSM3627649,GSM3627650,GSM3627651,GSM3627652,GSM3627653,GSM3627654,GSM3627655,GSM3627656,GSM3627657,GSM3627658,GSM3627659,GSM3627660,GSM3627661,GSM3627662,GSM3627663,GSM3627664,GSM3627665,GSM3627666,GSM3627667,GSM3627668,GSM3627669,GSM3627670,GSM3627671,GSM3627672,GSM3627673,GSM3627674,GSM3627675,GSM3627676,GSM3627677,GSM3627678,GSM3627679,GSM3627680,GSM3627681,GSM3627682,GSM3627683,GSM3627684,GSM3627685,GSM3627686,GSM3627687,GSM3627688,GSM3627689,GSM3627690,GSM3627691,GSM3627692,GSM3627693,GSM3627694,GSM3627695,GSM3627696,GSM3627697,GSM3627698,GSM3627699,GSM3627700,GSM3627701,GSM3627702,GSM3627703,GSM3627704,GSM3627705,GSM3627706,GSM3627707,GSM3627708,GSM3627709,GSM3627710,GSM3627711,GSM3627712,GSM3627713,GSM3627714,GSM3627715,GSM3627716,GSM3627717,GSM3627718,GSM3627719,GSM3627720,GSM3627721,GSM3627722,GSM3627723,GSM3627724,GSM3627725,GSM3627726,GSM3627727,GSM3627728,GSM3627729,GSM3627730,GSM3627731,GSM3627732,GSM3627733,GSM3627734,GSM3627735,GSM3627736,GSM3627737,GSM3627738,GSM3627739,GSM3627740,GSM3627741,GSM3627742,GSM3627743,GSM3627744,GSM3627745,GSM3627746,GSM3627747,GSM3627748,GSM3627749,GSM3627750,GSM3627751,GSM3627752,GSM3627753,GSM3627754,GSM3627755,GSM3627756,GSM3627757,GSM3627758,GSM3627759,GSM3627760,GSM3627761,GSM3627762,GSM3627763,GSM3627764,GSM3627765,GSM3627766,GSM3627767,GSM3627768,GSM3627769,GSM3627770,GSM3627771,GSM3627772,GSM3627773,GSM3627774,GSM3627775,GSM3627776,GSM3627777,GSM3627778,GSM3627779,GSM3627780,GSM3627781,GSM3627782,GSM3627783,GSM3627784,GSM3627785,GSM3627786,GSM3627787,GSM3627788,GSM3627789,GSM3627790,GSM3627791,GSM3627792,GSM3627793,GSM3627794,GSM3627795,GSM3627796,GSM3627797,GSM3627798,GSM3627799,GSM3627800,GSM3627801,GSM3627802,GSM3627803,GSM3627804,GSM3627805,GSM3627806,GSM3627807,GSM3627808,GSM3627809,GSM3627810,GSM3627811,GSM3627812,GSM3627813,GSM3627814,GSM3627815,GSM3627816,GSM3627817,GSM3627818,GSM3627819,GSM3627820,GSM3627821,GSM3627822,GSM3627823,GSM3627824,GSM3627825,GSM3627826,GSM3627827,GSM3627828,GSM3627829,GSM3627830,GSM3627831,GSM3627832,GSM3627833,GSM3627834,GSM3627835,GSM3627836,GSM3627837,GSM3627838,GSM3627839,GSM3627840,GSM3627841,GSM3627842,GSM3627843,GSM3627844,GSM3627845,GSM3627846,GSM3627847,GSM3627848,GSM3627849,GSM3627850,GSM3627851,GSM3627852,GSM3627853,GSM3627854,GSM3627855,GSM3627856,GSM3627857,GSM3627858,GSM3627859,GSM3627860,GSM3627861,GSM3627862,GSM3627863,GSM3627864,GSM3627865,GSM3627866,GSM3627867,GSM3627868,GSM3627869,GSM3627870,GSM3627871,GSM3627872,GSM3627873,GSM3627874,GSM3627875,GSM3627876,GSM3627877,GSM3627878,GSM3627879,GSM3627880,GSM3627881,GSM3627882,GSM3627883,GSM3627884,GSM3627885,GSM3627886,GSM3627887,GSM3627888,GSM3627889,GSM3627890,GSM3627891,GSM3627892,GSM3627893,GSM3627894,GSM3627895,GSM3627896,GSM3627897,GSM3627898,GSM3627899,GSM3627900,GSM3627901,GSM3627902,GSM3627903,GSM3627904,GSM3627905,GSM3627906,GSM3627907,GSM3627908,GSM3627909,GSM3627910,GSM3627911,GSM3627912,GSM3627913,GSM3627914,GSM3627915,GSM3627916,GSM3627917,GSM3627918,GSM3627919,GSM3627920,GSM3627921,GSM3627922,GSM3627923,GSM3627924,GSM3627925,GSM3627926,GSM3627927,GSM3627928,GSM3627929,GSM3627930,GSM3627931,GSM3627932,GSM3627933,GSM3627934,GSM3627935,GSM3627936,GSM3627937,GSM3627938,GSM3627939,GSM3627940,GSM3627941,GSM3627942,GSM3627943,GSM3627944,GSM3627945,GSM3627946,GSM3627947,GSM3627948,GSM3627949,GSM3627950,GSM3627951,GSM3627952,GSM3627953,GSM3627954,GSM3627955,GSM3627956,GSM3627957,GSM3627958,GSM3627959,GSM3627960,GSM3627961,GSM3627962,GSM3627963,GSM3627964,GSM3627965,GSM3627966,GSM3627967,GSM3627968,GSM3627969,GSM3627970,GSM3627971,GSM3627972,GSM3627973,GSM3627974,GSM3627975,GSM3627976,GSM3627977,GSM3627978,GSM3627979,GSM3627980,GSM3627981,GSM3627982,GSM3627983,GSM3627984,GSM3627985,GSM3627986,GSM3627987,GSM3627988,GSM3627989,GSM3627990,GSM3627991,GSM3627992,GSM3627993,GSM3627994,GSM3627995,GSM3627996,GSM3627997,GSM3627998,GSM3627999,GSM3628000,GSM3628001,GSM3628002,GSM3628003,GSM3628004,GSM3628005,GSM3628006,GSM3628007,GSM3628008,GSM3628009,GSM3628010,GSM3628011,GSM3628012,GSM3628013,GSM3628014,GSM3628015,GSM3628016,GSM3628017,GSM3628018,GSM3628019,GSM3628020,GSM3628021,GSM3628022,GSM3628023,GSM3628024,GSM3628025,GSM3628026,GSM3628027,GSM3628028,GSM3628029,GSM3628030,GSM3628031,GSM3628032,GSM3628033,GSM3628034,GSM3628035,GSM3628036,GSM3628037,GSM3628038,GSM3628039,GSM3628040,GSM3628041,GSM3628042,GSM3628043,GSM3628044,GSM3628045,GSM3628046,GSM3628047,GSM3628048,GSM3628049,GSM3628050,GSM3628051,GSM3628052,GSM3628053,GSM3628054,GSM3628055,GSM3628056,GSM3628057,GSM3628058,GSM3628059,GSM3628060,GSM3628061,GSM3628062,GSM3628063,GSM3628064,GSM3628065,GSM3628066,GSM3628067,GSM3628068,GSM3628069,GSM3628070,GSM3628071,GSM3628072,GSM3628073,GSM3628074,GSM3628075,GSM3628076,GSM3628077,GSM3628078,GSM3628079,GSM3628080,GSM3628081,GSM3628082,GSM3628083,GSM3628084,GSM3628085,GSM3628086,GSM3628087,GSM3628088,GSM3628089,GSM3628090,GSM3628091,GSM3628092,GSM3628093,GSM3628094,GSM3628095,GSM3628096,GSM3628097,GSM3628098,GSM3628099,GSM3628100,GSM3628101,GSM3628102,GSM3628103,GSM3628104,GSM3628105,GSM3628106,GSM3628107,GSM3628108,GSM3628109,GSM3628110,GSM3628111,GSM3628112,GSM3628113,GSM3628114,GSM3628115,GSM3628116,GSM3628117,GSM3628118,GSM3628119,GSM3628120,GSM3628121,GSM3628122,GSM3628123,GSM3628124,GSM3628125,GSM3628126,GSM3628127,GSM3628128,GSM3628129,GSM3628130,GSM3628131,GSM3628132,GSM3628133,GSM3628134,GSM3628135,GSM3628136,GSM3628137,GSM3628138,GSM3628139,GSM3628140,GSM3628141,GSM3628142,GSM3628143,GSM3628144,GSM3628145,GSM3628146,GSM3628147,GSM3628148,GSM3628149,GSM3628150,GSM3628151,GSM3628152,GSM3628153,GSM3628154,GSM3628155,GSM3628156,GSM3628157,GSM3628158,GSM3628159,GSM3628160,GSM3628161,GSM3628162,GSM3628163,GSM3628164,GSM3628165,GSM3628166,GSM3628167,GSM3628168,GSM3628169,GSM3628170,GSM3628171,GSM3628172,GSM3628173,GSM3628174,GSM3628175,GSM3628176,GSM3628177,GSM3628178,GSM3628179,GSM3628180,GSM3628181,GSM3628182,GSM3628183,GSM3628184,GSM3628185,GSM3628186,GSM3628187,GSM3628188,GSM3628189,GSM3628190,GSM3628191,GSM3628192,GSM3628193,GSM3628194,GSM3628195,GSM3628196,GSM3628197,GSM3628198,GSM3628199,GSM3628200,GSM3628201,GSM3628202,GSM3628203,GSM3628204,GSM3628205,GSM3628206,GSM3628207,GSM3628208,GSM3628209,GSM3628210,GSM3628211,GSM3628212,GSM3628213,GSM3628214,GSM3628215,GSM3628216,GSM3628217,GSM3628218,GSM3628219,GSM3628220,GSM3628221,GSM3628222,GSM3628223,GSM3628224,GSM3628225,GSM3628226,GSM3628227,GSM3628228,GSM3628229,GSM3628230,GSM3628231,GSM3628232,GSM3628233,GSM3628234,GSM3628235,GSM3628236,GSM3628237,GSM3628238,GSM3628239,GSM3628240,GSM3628241,GSM3628242,GSM3628243,GSM3628244,GSM3628245,GSM3628246,GSM3628247,GSM3628248,GSM3628249,GSM3628250,GSM3628251,GSM3628252,GSM3628253,GSM3628254,GSM3628255,GSM3628256,GSM3628257,GSM3628258,GSM3628259,GSM3628260,GSM3628261,GSM3628262,GSM3628263,GSM3628264,GSM3628265,GSM3628266,GSM3628267,GSM3628268,GSM3628269,GSM3628270,GSM3628271,GSM3628272,GSM3628273,GSM3628274,GSM3628275,GSM3628276,GSM3628277,GSM3628278,GSM3628279,GSM3628280,GSM3628281,GSM3628282,GSM3628283,GSM3628284,GSM3628285,GSM3628286,GSM3628287,GSM3628288,GSM3628289,GSM3628290,GSM3628291,GSM3628292,GSM3628293,GSM3628294,GSM3628295,GSM3628296,GSM3628297,GSM3628298,GSM3628299,GSM3628300,GSM3628301,GSM3628302,GSM3628303,GSM3628304,GSM3628305,GSM3628306,GSM3628307,GSM3628308,GSM3628309,GSM3628310,GSM3628311,GSM3628312,GSM3628313,GSM3628314,GSM3628315,GSM3628316,GSM3628317,GSM3628318,GSM3628319,GSM3628320,GSM3628321,GSM3628322,GSM3628323,GSM3628324,GSM3628325,GSM3628326,GSM3628327,GSM3628328,GSM3628329,GSM3628330,GSM3628331,GSM3628332,GSM3628333,GSM3628334,GSM3628335,GSM3628336,GSM3628337,GSM3628338,GSM3628339,GSM3628340,GSM3628341,GSM3628342,GSM3628343,GSM3628344,GSM3628345,GSM3628346,GSM3628347,GSM3628348,GSM3628349,GSM3628350,GSM3628351,GSM3628352,GSM3628353,GSM3628354,GSM3628355,GSM3628356,GSM3628357,GSM3628358,GSM3628359,GSM3628360,GSM3628361,GSM3628362,GSM3628363,GSM3628364,GSM3628365,GSM3628366,GSM3628367,GSM3628368,GSM3628369,GSM3628370,GSM3628371,GSM3628372,GSM3628373,GSM3628374,GSM3628375,GSM3628376,GSM3628377,GSM3628378,GSM3628379,GSM3628380,GSM3628381,GSM3628382,GSM3628383,GSM3628384,GSM3628385,GSM3628386,GSM3628387,GSM3628388,GSM3628389,GSM3628390,GSM3628391,GSM3628392,GSM3628393,GSM3628394,GSM3628395,GSM3628396,GSM3628397,GSM3628398,GSM3628399,GSM3628400,GSM3628401,GSM3628402,GSM3628403,GSM3628404,GSM3628405,GSM3628406,GSM3628407,GSM3628408,GSM3628409,GSM3628410,GSM3628411,GSM3628412,GSM3628413,GSM3628414,GSM3628415,GSM3628416,GSM3628417,GSM3628418,GSM3628419,GSM3628420,GSM3628421,GSM3628422,GSM3628423,GSM3628424,GSM3628425,GSM3628426,GSM3628427,GSM3628428,GSM3628429,GSM3628430,GSM3628431,GSM3628432,GSM3628433,GSM3628434,GSM3628435,GSM3628436,GSM3628437,GSM3628438,GSM3628439,GSM3628440,GSM3628441,GSM3628442,GSM3628443,GSM3628444,GSM3628445,GSM3628446,GSM3628447,GSM3628448,GSM3628449,GSM3628450,GSM3628451,GSM3628452,GSM3628453,GSM3628454,GSM3628455,GSM3628456,GSM3628457,GSM3628458,GSM3628459,GSM3628460,GSM3628461,GSM3628462,GSM3628463,GSM3628464,GSM3628465,GSM3628466,GSM3628467,GSM3628468,GSM3628469,GSM3628470,GSM3628471,GSM3628472,GSM3628473,GSM3628474,GSM3628475,GSM3628476,GSM3628477,GSM3628478,GSM3628479,GSM3628480,GSM3628481,GSM3628482,GSM3628483,GSM3628484,GSM3628485,GSM3628486,GSM3628487,GSM3628488,GSM3628489,GSM3628490,GSM3628491,GSM3628492,GSM3628493,GSM3628494,GSM3628495,GSM3628496,GSM3628497,GSM3628498,GSM3628499,GSM3628500,GSM3628501,GSM3628502,GSM3628503,GSM3628504,GSM3628505,GSM3628506,GSM3628507,GSM3628508,GSM3628509,GSM3628510,GSM3628511,GSM3628512,GSM3628513,GSM3628514,GSM3628515,GSM3628516,GSM3628517,GSM3628518,GSM3628519,GSM3628520,GSM3628521,GSM3628522,GSM3628523,GSM3628524,GSM3628525,GSM3628526,GSM3628527,GSM3628528,GSM3628529,GSM3628530,GSM3628531,GSM3628532,GSM3628533,GSM3628534,GSM3628535,GSM3628536,GSM3628537,GSM3628538,GSM3628539,GSM3628540,GSM3628541,GSM3628542,GSM3628543,GSM3628544,GSM3628545,GSM3628546,GSM3628547,GSM3628548,GSM3628549,GSM3628550,GSM3628551,GSM3628552,GSM3628553,GSM3628554,GSM3628555,GSM3628556,GSM3628557,GSM3628558,GSM3628559,GSM3628560,GSM3628561,GSM3628562,GSM3628563,GSM3628564,GSM3628565,GSM3628566,GSM3628567,GSM3628568,GSM3628569,GSM3628570,GSM3628571,GSM3628572,GSM3628573,GSM3628574,GSM3628575,GSM3628576,GSM3628577,GSM3628578,GSM3628579,GSM3628580,GSM3628581,GSM3628582,GSM3628583,GSM3628584,GSM3628585,GSM3628586,GSM3628587,GSM3628588,GSM3628589,GSM3628590,GSM3628591,GSM3628592,GSM3628593,GSM3628594,GSM3628595,GSM3628596,GSM3628597,GSM3628598,GSM3628599,GSM3628600,GSM3628601,GSM3628602,GSM3628603,GSM3628604,GSM3628605,GSM3628606,GSM3628607,GSM3628608,GSM3628609,GSM3628610,GSM3628611,GSM3628612,GSM3628613,GSM3628614,GSM3628615,GSM3628616,GSM3628617,GSM3628618,GSM3628619,GSM3628620,GSM3628621,GSM3628622,GSM3628623,GSM3628624,GSM3628625,GSM3628626,GSM3628627,GSM3628628,GSM3628629,GSM3628630,GSM3628631,GSM3628632,GSM3628633,GSM3628634,GSM3628635,GSM3628636,GSM3628637,GSM3628638,GSM3628639,GSM3628640,GSM3628641,GSM3628642,GSM3628643,GSM3628644,GSM3628645,GSM3628646,GSM3628647,GSM3628648,GSM3628649,GSM3628650,GSM3628651,GSM3628652,GSM3628653,GSM3628654,GSM3628655,GSM3628656,GSM3628657,GSM3628658,GSM3628659,GSM3628660,GSM3628661,GSM3628662,GSM3628663,GSM3628664,GSM3628665,GSM3628666,GSM3628667,GSM3628668,GSM3628669,GSM3628670,GSM3628671,GSM3628672,GSM3628673,GSM3628674,GSM3628675,GSM3628676,GSM3628677,GSM3628678,GSM3628679,GSM3628680,GSM3628681,GSM3628682,GSM3628683,GSM3628684,GSM3628685,GSM3628686,GSM3628687,GSM3628688,GSM3628689,GSM3628690,GSM3628691,GSM3628692,GSM3628693,GSM3628694,GSM3628695,GSM3628696,GSM3628697,GSM3628698,GSM3628699,GSM3628700,GSM3628701,GSM3628702,GSM3628703,GSM3628704,GSM3628705,GSM3628706,GSM3628707,GSM3628708,GSM3628709,GSM3628710,GSM3628711,GSM3628712,GSM3628713,GSM3628714,GSM3628715,GSM3628716,GSM3628717,GSM3628718,GSM3628719,GSM3628720,GSM3628721,GSM3628722,GSM3628723,GSM3628724,GSM3628725,GSM3628726,GSM3628727,GSM3628728,GSM3628729,GSM3628730,GSM3628731,GSM3628732,GSM3628733,GSM3628734,GSM3628735,GSM3628736,GSM3628737,GSM3628738,GSM3628739,GSM3628740,GSM3628741,GSM3628742,GSM3628743,GSM3628744,GSM3628745,GSM3628746,GSM3628747,GSM3628748,GSM3628749,GSM3628750,GSM3628751,GSM3628752,GSM3628753,GSM3628754,GSM3628755,GSM3628756,GSM3628757,GSM3628758,GSM3628759,GSM3628760,GSM3628761,GSM3628762,GSM3628763,GSM3628764,GSM3628765,GSM3628766,GSM3628767,GSM3628768,GSM3628769,GSM3628770,GSM3628771,GSM3628772,GSM3628773,GSM3628774,GSM3628775,GSM3628776,GSM3628777,GSM3628778,GSM3628779,GSM3628780,GSM3628781,GSM3628782,GSM3628783,GSM3628784,GSM3628785,GSM3628786,GSM3628787,GSM3628788,GSM3628789,GSM3628790,GSM3628791,GSM3628792,GSM3628793,GSM3628794,GSM3628795,GSM3628796,GSM3628797,GSM3628798,GSM3628799,GSM3628800,GSM3628801,GSM3628802,GSM3628803,GSM3628804,GSM3628805,GSM3628806,GSM3628807,GSM3628808,GSM3628809,GSM3628810,GSM3628811,GSM3628812,GSM3628813,GSM3628814,GSM3628815,GSM3628816,GSM3628817,GSM3628818,GSM3628819,GSM3628820,GSM3628821,GSM3628822,GSM3628823,GSM3628824,GSM3628825,GSM3628826,GSM3628827,GSM3628828,GSM3628829,GSM3628830,GSM3628831,GSM3628832,GSM3628833,GSM3628834,GSM3628835,GSM3628836,GSM3628837,GSM3628838,GSM3628839,GSM3628840,GSM3628841,GSM3628842,GSM3628843,GSM3628844,GSM3628845,GSM3628846,GSM3628847,GSM3628848,GSM3628849,GSM3628850,GSM3628851,GSM3628852,GSM3628853,GSM3628854,GSM3628855,GSM3628856,GSM3628857,GSM3628858,GSM3628859,GSM3628860,GSM3628861,GSM3628862,GSM3628863,GSM3628864,GSM3628865,GSM3628866,GSM3628867,GSM3628868,GSM3628869,GSM3628870,GSM3628871,GSM3628872,GSM3628873,GSM3628874,GSM3628875,GSM3628876,GSM3628877,GSM3628878,GSM3628879,GSM3628880,GSM3628881,GSM3628882,GSM3628883,GSM3628884,GSM3628885,GSM3628886,GSM3628887,GSM3628888,GSM3628889,GSM3628890,GSM3628891,GSM3628892,GSM3628893,GSM3628894,GSM3628895,GSM3628896,GSM3628897,GSM3628898,GSM3628899,GSM3628900,GSM3628901,GSM3628902,GSM3628903,GSM3628904,GSM3628905,GSM3628906,GSM3628907,GSM3628908,GSM3628909,GSM3628910,GSM3628911,GSM3628912,GSM3628913,GSM3628914,GSM3628915,GSM3628916,GSM3628917,GSM3628918,GSM3628919,GSM3628920,GSM3628921,GSM3628922,GSM3628923,GSM3628924,GSM3628925,GSM3628926,GSM3628927,GSM3628928,GSM3628929,GSM3628930,GSM3628931,GSM3628932,GSM3628933,GSM3628934,GSM3628935,GSM3628936,GSM3628937,GSM3628938,GSM3628939,GSM3628940,GSM3628941,GSM3628942,GSM3628943,GSM3628944,GSM3628945,GSM3628946,GSM3628947,GSM3628948,GSM3628949,GSM3628950,GSM3628951,GSM3628952,GSM3628953,GSM3628954,GSM3628955,GSM3628956,GSM3628957,GSM3628958,GSM3628959,GSM3628960,GSM3628961,GSM3628962,GSM3628963,GSM3628964,GSM3628965,GSM3628966,GSM3628967,GSM3628968,GSM3628969,GSM3628970,GSM3628971,GSM3628972,GSM3628973,GSM3628974,GSM3628975,GSM3628976,GSM3628977,GSM3628978,GSM3628979,GSM3628980,GSM3628981,GSM3628982,GSM3628983,GSM3628984,GSM3628985,GSM3628986,GSM3628987,GSM3628988,GSM3628989,GSM3628990,GSM3628991,GSM3628992,GSM3628993,GSM3628994,GSM3628995,GSM3628996,GSM3628997,GSM3628998,GSM3628999,GSM3629000,GSM3629001,GSM3629002,GSM3629003,GSM3629004,GSM3629005,GSM3629006,GSM3629007,GSM3629008,GSM3629009,GSM3629010,GSM3629011,GSM3629012,GSM3629013,GSM3629014,GSM3629015,GSM3629016,GSM3629017,GSM3629018,GSM3629019,GSM3629020,GSM3629021,GSM3629022,GSM3629023,GSM3629024,GSM3629025,GSM3629026,GSM3629027,GSM3629028,GSM3629029,GSM3629030,GSM3629031,GSM3629032,GSM3629033,GSM3629034,GSM3629035,GSM3629036,GSM3629037,GSM3629038,GSM3629039,GSM3629040,GSM3629041,GSM3629042,GSM3629043,GSM3629044,GSM3629045,GSM3629046,GSM3629047,GSM3629048,GSM3629049,GSM3629050,GSM3629051,GSM3629052,GSM3629053,GSM3629054,GSM3629055,GSM3629056,GSM3629057,GSM3629058,GSM3629059,GSM3629060,GSM3629061,GSM3629062,GSM3629063,GSM3629064,GSM3629065,GSM3629066,GSM3629067,GSM3629068,GSM3629069,GSM3629070,GSM3629071,GSM3629072,GSM3629073,GSM3629074,GSM3629075,GSM3629076,GSM3629077,GSM3629078,GSM3629079,GSM3629080,GSM3629081,GSM3629082,GSM3629083,GSM3629084,GSM3629085,GSM3629086,GSM3629087,GSM3629088,GSM3629089,GSM3629090,GSM3629091,GSM3629092,GSM3629093,GSM3629094,GSM3629095,GSM3629096,GSM3629097,GSM3629098,GSM3629099,GSM3629100,GSM3629101,GSM3629102,GSM3629103,GSM3629104,GSM3629105,GSM3629106,GSM3629107,GSM3629108,GSM3629109,GSM3629110,GSM3629111,GSM3629112,GSM3629113,GSM3629114,GSM3629115,GSM3629116,GSM3629117,GSM3629118,GSM3629119,GSM3629120,GSM3629121,GSM3629122,GSM3629123,GSM3629124,GSM3629125,GSM3629126,GSM3629127,GSM3629128,GSM3629129,GSM3629130,GSM3629131,GSM3629132,GSM3629133,GSM3629134,GSM3629135,GSM3629136,GSM3629137,GSM3629138,GSM3629139,GSM3629140,GSM3629141,GSM3629142,GSM3629143,GSM3629144,GSM3629145,GSM3629146,GSM3629147,GSM3629148,GSM3629149,GSM3629150,GSM3629151,GSM3629152,GSM3629153,GSM3629154,GSM3629155,GSM3629156,GSM3629157,GSM3629158,GSM3629159,GSM3629160,GSM3629161,GSM3629162,GSM3629163,GSM3629164,GSM3629165,GSM3629166,GSM3629167,GSM3629168,GSM3629169,GSM3629170,GSM3629171,GSM3629172,GSM3629173,GSM3629174,GSM3629175,GSM3629176,GSM3629177,GSM3629178,GSM3629179,GSM3629180,GSM3629181,GSM3629182,GSM3629183,GSM3629184,GSM3629185,GSM3629186,GSM3629187,GSM3629188,GSM3629189,GSM3629190,GSM3629191,GSM3629192,GSM3629193,GSM3629194,GSM3629195,GSM3629196,GSM3629197,GSM3629198,GSM3629199,GSM3629200,GSM3629201,GSM3629202,GSM3629203,GSM3629204,GSM3629205,GSM3629206,GSM3629207,GSM3629208,GSM3629209,GSM3629210,GSM3629211,GSM3629212,GSM3629213,GSM3629214,GSM3629215,GSM3629216,GSM3629217,GSM3629218,GSM3629219,GSM3629220,GSM3629221,GSM3629222,GSM3629223,GSM3629224,GSM3629225,GSM3629226,GSM3629227,GSM3629228,GSM3629229,GSM3629230,GSM3629231,GSM3629232,GSM3629233,GSM3629234,GSM3629235,GSM3629236,GSM3629237,GSM3629238,GSM3629239,GSM3629240,GSM3629241,GSM3629242,GSM3629243,GSM3629244,GSM3629245,GSM3629246,GSM3629247,GSM3629248,GSM3629249,GSM3629250,GSM3629251,GSM3629252,GSM3629253,GSM3629254,GSM3629255,GSM3629256,GSM3629257,GSM3629258,GSM3629259,GSM3629260,GSM3629261,GSM3629262,GSM3629263,GSM3629264,GSM3629265,GSM3629266,GSM3629267,GSM3629268,GSM3629269,GSM3629270,GSM3629271,GSM3629272,GSM3629273,GSM3629274,GSM3629275,GSM3629276,GSM3629277,GSM3629278,GSM3629279,GSM3629280,GSM3629281,GSM3629282,GSM3629283,GSM3629284,GSM3629285,GSM3629286,GSM3629287,GSM3629288,GSM3629289,GSM3629290,GSM3629291,GSM3629292,GSM3629293,GSM3629294,GSM3629295,GSM3629296,GSM3629297,GSM3629298,GSM3629299,GSM3629300,GSM3629301,GSM3629302,GSM3629303,GSM3629304,GSM3629305,GSM3629306,GSM3629307,GSM3629308,GSM3629309,GSM3629310,GSM3629311,GSM3629312,GSM3629313,GSM3629314,GSM3629315,GSM3629316,GSM3629317,GSM3629318,GSM3629319,GSM3629320,GSM3629321,GSM3629322,GSM3629323,GSM3629324,GSM3629325,GSM3629326,GSM3629327,GSM3629328,GSM3629329,GSM3629330,GSM3629331,GSM3629332,GSM3629333,GSM3629334,GSM3629335,GSM3629336,GSM3629337,GSM3629338,GSM3629339,GSM3629340,GSM3629341,GSM3629342,GSM3629343,GSM3629344,GSM3629345,GSM3629346,GSM3629347,GSM3629348,GSM3629349,GSM3629350,GSM3629351,GSM3629352,GSM3629353,GSM3629354,GSM3629355,GSM3629356,GSM3629357,GSM3629358,GSM3629359,GSM3629360,GSM3629361,GSM3629362,GSM3629363,GSM3629364,GSM3629365,GSM3629366,GSM3629367,GSM3629368,GSM3629369,GSM3629370,GSM3629371,GSM3629372,GSM3629373,GSM3629374,GSM3629375,GSM3629376,GSM3629377,GSM3629378,GSM3629379,GSM3629380,GSM3629381,GSM3629382,GSM3629383,GSM3629384,GSM3629385,GSM3629386,GSM3629387,GSM3629388,GSM3629389,GSM3629390,GSM3629391,GSM3629392,GSM3629393,GSM3629394,GSM3629395,GSM3629396
|
2 |
+
Kidney_Clear_Cell_Carcinoma,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
p3/preprocess/Kidney_Clear_Cell_Carcinoma/clinical_data/GSE131027.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM3759992,GSM3759993,GSM3759994,GSM3759995,GSM3759996,GSM3759997,GSM3759998,GSM3759999,GSM3760000,GSM3760001,GSM3760002,GSM3760003,GSM3760004,GSM3760005,GSM3760006,GSM3760007,GSM3760008,GSM3760009,GSM3760010,GSM3760011,GSM3760012,GSM3760013,GSM3760014,GSM3760015,GSM3760016,GSM3760017,GSM3760018,GSM3760019,GSM3760020,GSM3760021,GSM3760022,GSM3760023,GSM3760024,GSM3760025,GSM3760026,GSM3760027,GSM3760028,GSM3760029,GSM3760030,GSM3760031,GSM3760032,GSM3760033,GSM3760034,GSM3760035,GSM3760036,GSM3760037,GSM3760038,GSM3760039,GSM3760040,GSM3760041,GSM3760042,GSM3760043,GSM3760044,GSM3760045,GSM3760046,GSM3760047,GSM3760048,GSM3760049,GSM3760050,GSM3760051,GSM3760052,GSM3760053,GSM3760054,GSM3760055,GSM3760056,GSM3760057,GSM3760058,GSM3760059,GSM3760060,GSM3760061,GSM3760062,GSM3760063,GSM3760064,GSM3760065,GSM3760066,GSM3760067,GSM3760068,GSM3760069,GSM3760070,GSM3760071,GSM3760072,GSM3760073,GSM3760074,GSM3760075,GSM3760076,GSM3760077,GSM3760078,GSM3760079,GSM3760080,GSM3760081,GSM3760082,GSM3760083
|
2 |
+
Kidney_Clear_Cell_Carcinoma,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
p3/preprocess/Kidney_Clear_Cell_Carcinoma/clinical_data/GSE150404.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,GSM4548605,GSM4548606,GSM4548607,GSM4548608,GSM4548609,GSM4548610,GSM4548611,GSM4548612,GSM4548613,GSM4548614,GSM4548615,GSM4548616,GSM4548617,GSM4548618,GSM4548619,GSM4548620,GSM4548621,GSM4548622,GSM4548623,GSM4548624,GSM4548625,GSM4548626,GSM4548627,GSM4548628,GSM4548629,GSM4548630,GSM4548631,GSM4548632,GSM4548633,GSM4548634,GSM4548635,GSM4548636,GSM4548637,GSM4548638,GSM4548639,GSM4548640,GSM4548641,GSM4548642,GSM4548643,GSM4548644,GSM4548645,GSM4548646,GSM4548647,GSM4548648,GSM4548649,GSM4548650,GSM4548651,GSM4548652,GSM4548653,GSM4548654,GSM4548655,GSM4548656,GSM4548657,GSM4548658,GSM4548659,GSM4548660,GSM4548661,GSM4548662,GSM4548663,GSM4548664
|
2 |
+
Kidney_Clear_Cell_Carcinoma,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
3 |
+
Age,55.0,77.0,63.0,79.0,65.0,75.0,70.0,60.0,70.0,65.0,56.0,74.0,60.0,61.0,83.0,81.0,62.0,63.0,65.0,61.0,73.0,63.0,64.0,66.0,64.0,72.0,52.0,61.0,67.0,71.0,65.0,79.0,79.0,46.0,59.0,,59.0,64.0,50.0,69.0,79.0,,69.0,67.0,54.0,53.0,63.0,51.0,68.0,60.0,60.0,64.0,52.0,58.0,58.0,56.0,,57.0,56.0,45.0
|
4 |
+
Gender,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,,0.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,,1.0,1.0,0.0
|
p3/preprocess/Kidney_Clear_Cell_Carcinoma/clinical_data/GSE245862.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM7850012,GSM7850013,GSM7850014,GSM7850015,GSM7850016,GSM7850017,GSM7850018,GSM7850019,GSM7850020,GSM7850021,GSM7850022,GSM7850023,GSM7850024,GSM7850025,GSM7850026,GSM7850027,GSM7850028,GSM7850029,GSM7850030,GSM7850031,GSM7850032,GSM7850033,GSM7850034,GSM7850035,GSM7850036,GSM7850038,GSM7850039,GSM7850040,GSM7850041,GSM7850042,GSM7850043,GSM7850044,GSM7850045,GSM7850046,GSM7850047,GSM7850048,GSM7850049,GSM7850050,GSM7850051,GSM7850052,GSM7850053,GSM7850054,GSM7850055,GSM7850056,GSM7850057
|
2 |
+
Kidney_Clear_Cell_Carcinoma,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0
|
p3/preprocess/Kidney_Clear_Cell_Carcinoma/clinical_data/GSE94321.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM2473069,GSM2473070,GSM2473071,GSM2473072,GSM2473073,GSM2473074,GSM2473075,GSM2473076,GSM2473077,GSM2473078,GSM2473079,GSM2473080,GSM2473081,GSM2473082,GSM2473083,GSM2473084,GSM2473085,GSM2473086,GSM2473087,GSM2473088,GSM2473089,GSM2473090,GSM2473091,GSM2473092,GSM2473093,GSM2473094,GSM2473095,GSM2473096,GSM2473097,GSM2473098,GSM2473099,GSM2473100,GSM2473101,GSM2473102,GSM2473103,GSM2473104,GSM2473105,GSM2473106,GSM2473107,GSM2473108,GSM2473109,GSM2473110,GSM2473111,GSM2473112,GSM2473113,GSM2473114,GSM2473115,GSM2473116,GSM2473117,GSM2473118,GSM2473119,GSM2473120,GSM2473121,GSM2473122,GSM2473123,GSM2473124,GSM2473125,GSM2473126,GSM2473127,GSM2473128,GSM2473129,GSM2473130,GSM2473131,GSM2473132,GSM2473133,GSM2473134,GSM2473135,GSM2473136,GSM2473137
|
2 |
+
Kidney_Clear_Cell_Carcinoma,,,0.0,0.0,1.0,,,,,,0.0,0.0,,0.0,0.0,0.0,,,,,,,,,,,1.0,0.0,1.0,0.0,,0.0,,,,,0.0,0.0,,,0.0,0.0,0.0,,0.0,,,,0.0,,0.0,,0.0,0.0,,,,0.0,1.0,,0.0,0.0,0.0,1.0,0.0,0.0,0.0,,
|
p3/preprocess/Kidney_Clear_Cell_Carcinoma/clinical_data/GSE95425.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM2510512,GSM2510513,GSM2510514,GSM2510515,GSM2510516,GSM2510517,GSM2510518,GSM2510519,GSM2510520,GSM2510521,GSM2510522,GSM2510523,GSM2510524,GSM2510525,GSM2510526,GSM2510527,GSM2510528,GSM2510529,GSM2510530,GSM2510531,GSM2510532,GSM2510533,GSM2510534,GSM2510535,GSM2510536,GSM2510537,GSM2510538,GSM2510539,GSM2510540,GSM2510541,GSM2510542,GSM2510543,GSM2510544,GSM2510545,GSM2510546,GSM2510547,GSM2510548,GSM2510549,GSM2510550,GSM2510551,GSM2510552,GSM2510553,GSM2510554,GSM2510555,GSM2510556,GSM2510557,GSM2510558,GSM2510559,GSM2510560,GSM2510561,GSM2510562,GSM2510563,GSM2510564
|
2 |
+
Kidney_Clear_Cell_Carcinoma,0.0,,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,,1.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,,1.0,1.0,0.0,,1.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,,1.0,,0.0,0.0,1.0
|
p3/preprocess/Kidney_Clear_Cell_Carcinoma/clinical_data/TCGA.csv
ADDED
@@ -0,0 +1,946 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
sampleID,Kidney_Clear_Cell_Carcinoma,Age,Gender
|
2 |
+
TCGA-3Z-A93Z-01,1,69,1
|
3 |
+
TCGA-6D-AA2E-01,1,68,0
|
4 |
+
TCGA-A3-3306-01,1,67,1
|
5 |
+
TCGA-A3-3306-11,0,67,1
|
6 |
+
TCGA-A3-3307-01,1,66,1
|
7 |
+
TCGA-A3-3308-01,1,77,0
|
8 |
+
TCGA-A3-3308-11,0,77,0
|
9 |
+
TCGA-A3-3311-01,1,57,1
|
10 |
+
TCGA-A3-3311-11,0,57,1
|
11 |
+
TCGA-A3-3313-01,1,59,1
|
12 |
+
TCGA-A3-3313-11,0,59,1
|
13 |
+
TCGA-A3-3316-01,1,57,1
|
14 |
+
TCGA-A3-3316-11,0,57,1
|
15 |
+
TCGA-A3-3317-01,1,67,1
|
16 |
+
TCGA-A3-3317-11,0,67,1
|
17 |
+
TCGA-A3-3319-01,1,70,1
|
18 |
+
TCGA-A3-3319-11,0,70,1
|
19 |
+
TCGA-A3-3320-01,1,52,0
|
20 |
+
TCGA-A3-3320-11,0,52,0
|
21 |
+
TCGA-A3-3322-01,1,51,1
|
22 |
+
TCGA-A3-3322-11,0,51,1
|
23 |
+
TCGA-A3-3323-01,1,53,1
|
24 |
+
TCGA-A3-3323-11,0,53,1
|
25 |
+
TCGA-A3-3324-01,1,51,1
|
26 |
+
TCGA-A3-3324-11,0,51,1
|
27 |
+
TCGA-A3-3325-01,1,52,1
|
28 |
+
TCGA-A3-3325-11,0,52,1
|
29 |
+
TCGA-A3-3326-01,1,47,1
|
30 |
+
TCGA-A3-3326-11,0,47,1
|
31 |
+
TCGA-A3-3328-01,1,79,1
|
32 |
+
TCGA-A3-3328-11,0,79,1
|
33 |
+
TCGA-A3-3329-01,1,75,1
|
34 |
+
TCGA-A3-3329-11,0,75,1
|
35 |
+
TCGA-A3-3331-01,1,86,0
|
36 |
+
TCGA-A3-3331-11,0,86,0
|
37 |
+
TCGA-A3-3335-01,1,41,1
|
38 |
+
TCGA-A3-3335-11,0,41,1
|
39 |
+
TCGA-A3-3336-01,1,75,0
|
40 |
+
TCGA-A3-3336-11,0,75,0
|
41 |
+
TCGA-A3-3343-01,1,79,1
|
42 |
+
TCGA-A3-3343-11,0,79,1
|
43 |
+
TCGA-A3-3346-01,1,68,1
|
44 |
+
TCGA-A3-3346-11,0,68,1
|
45 |
+
TCGA-A3-3347-01,1,76,0
|
46 |
+
TCGA-A3-3347-11,0,76,0
|
47 |
+
TCGA-A3-3349-01,1,34,0
|
48 |
+
TCGA-A3-3349-11,0,34,0
|
49 |
+
TCGA-A3-3351-01,1,42,1
|
50 |
+
TCGA-A3-3351-11,0,42,1
|
51 |
+
TCGA-A3-3352-01,1,74,1
|
52 |
+
TCGA-A3-3352-11,0,74,1
|
53 |
+
TCGA-A3-3357-01,1,62,1
|
54 |
+
TCGA-A3-3357-11,0,62,1
|
55 |
+
TCGA-A3-3358-01,1,57,0
|
56 |
+
TCGA-A3-3358-11,0,57,0
|
57 |
+
TCGA-A3-3359-01,1,82,0
|
58 |
+
TCGA-A3-3359-11,0,82,0
|
59 |
+
TCGA-A3-3362-01,1,60,0
|
60 |
+
TCGA-A3-3362-11,0,60,0
|
61 |
+
TCGA-A3-3363-01,1,50,1
|
62 |
+
TCGA-A3-3363-11,0,50,1
|
63 |
+
TCGA-A3-3365-01,1,46,1
|
64 |
+
TCGA-A3-3365-11,0,46,1
|
65 |
+
TCGA-A3-3367-01,1,72,1
|
66 |
+
TCGA-A3-3367-11,0,72,1
|
67 |
+
TCGA-A3-3370-01,1,48,0
|
68 |
+
TCGA-A3-3370-11,0,48,0
|
69 |
+
TCGA-A3-3372-01,1,64,1
|
70 |
+
TCGA-A3-3372-11,0,64,1
|
71 |
+
TCGA-A3-3373-01,1,54,0
|
72 |
+
TCGA-A3-3373-11,0,54,0
|
73 |
+
TCGA-A3-3374-01,1,51,0
|
74 |
+
TCGA-A3-3374-11,0,51,0
|
75 |
+
TCGA-A3-3376-01,1,51,1
|
76 |
+
TCGA-A3-3376-11,0,51,1
|
77 |
+
TCGA-A3-3378-01,1,60,1
|
78 |
+
TCGA-A3-3378-11,0,60,1
|
79 |
+
TCGA-A3-3380-01,1,54,1
|
80 |
+
TCGA-A3-3380-11,0,54,1
|
81 |
+
TCGA-A3-3382-01,1,69,1
|
82 |
+
TCGA-A3-3382-11,0,69,1
|
83 |
+
TCGA-A3-3383-01,1,52,1
|
84 |
+
TCGA-A3-3383-11,0,52,1
|
85 |
+
TCGA-A3-3385-01,1,46,0
|
86 |
+
TCGA-A3-3385-11,0,46,0
|
87 |
+
TCGA-A3-3387-01,1,49,1
|
88 |
+
TCGA-A3-3387-11,0,49,1
|
89 |
+
TCGA-A3-A6NI-01,1,47,1
|
90 |
+
TCGA-A3-A6NJ-01,1,57,0
|
91 |
+
TCGA-A3-A6NL-01,1,49,0
|
92 |
+
TCGA-A3-A6NN-01,1,78,1
|
93 |
+
TCGA-A3-A8CQ-01,1,59,0
|
94 |
+
TCGA-A3-A8OU-01,1,74,0
|
95 |
+
TCGA-A3-A8OV-01,1,75,1
|
96 |
+
TCGA-A3-A8OW-01,1,37,1
|
97 |
+
TCGA-A3-A8OX-01,1,65,0
|
98 |
+
TCGA-AK-3425-01,1,68,1
|
99 |
+
TCGA-AK-3426-01,1,37,1
|
100 |
+
TCGA-AK-3427-01,1,65,1
|
101 |
+
TCGA-AK-3428-01,1,62,1
|
102 |
+
TCGA-AK-3429-01,1,54,0
|
103 |
+
TCGA-AK-3430-01,1,61,1
|
104 |
+
TCGA-AK-3431-01,1,62,0
|
105 |
+
TCGA-AK-3433-01,1,48,0
|
106 |
+
TCGA-AK-3434-01,1,72,1
|
107 |
+
TCGA-AK-3436-01,1,40,1
|
108 |
+
TCGA-AK-3440-01,1,58,1
|
109 |
+
TCGA-AK-3443-01,1,45,1
|
110 |
+
TCGA-AK-3444-01,1,80,0
|
111 |
+
TCGA-AK-3445-01,1,69,1
|
112 |
+
TCGA-AK-3447-01,1,83,1
|
113 |
+
TCGA-AK-3450-01,1,85,0
|
114 |
+
TCGA-AK-3451-01,1,48,1
|
115 |
+
TCGA-AK-3453-01,1,58,0
|
116 |
+
TCGA-AK-3454-01,1,84,1
|
117 |
+
TCGA-AK-3455-01,1,71,0
|
118 |
+
TCGA-AK-3456-01,1,48,1
|
119 |
+
TCGA-AK-3458-01,1,48,1
|
120 |
+
TCGA-AK-3460-01,1,58,1
|
121 |
+
TCGA-AK-3461-01,1,72,1
|
122 |
+
TCGA-AK-3465-01,1,71,0
|
123 |
+
TCGA-AS-3777-01,1,63,1
|
124 |
+
TCGA-AS-3778-01,1,35,1
|
125 |
+
TCGA-B0-4688-01,1,46,1
|
126 |
+
TCGA-B0-4688-11,0,46,1
|
127 |
+
TCGA-B0-4690-01,1,65,1
|
128 |
+
TCGA-B0-4690-11,0,65,1
|
129 |
+
TCGA-B0-4691-01,1,55,1
|
130 |
+
TCGA-B0-4691-11,0,55,1
|
131 |
+
TCGA-B0-4693-01,1,72,0
|
132 |
+
TCGA-B0-4693-11,0,72,0
|
133 |
+
TCGA-B0-4694-01,1,72,1
|
134 |
+
TCGA-B0-4694-11,0,72,1
|
135 |
+
TCGA-B0-4696-01,1,58,1
|
136 |
+
TCGA-B0-4696-11,0,58,1
|
137 |
+
TCGA-B0-4697-01,1,46,0
|
138 |
+
TCGA-B0-4697-11,0,46,0
|
139 |
+
TCGA-B0-4698-01,1,75,1
|
140 |
+
TCGA-B0-4698-11,0,75,1
|
141 |
+
TCGA-B0-4699-01,1,74,1
|
142 |
+
TCGA-B0-4699-11,0,74,1
|
143 |
+
TCGA-B0-4700-01,1,60,1
|
144 |
+
TCGA-B0-4700-11,0,60,1
|
145 |
+
TCGA-B0-4701-01,1,66,0
|
146 |
+
TCGA-B0-4701-11,0,66,0
|
147 |
+
TCGA-B0-4703-01,1,51,1
|
148 |
+
TCGA-B0-4703-11,0,51,1
|
149 |
+
TCGA-B0-4706-01,1,61,1
|
150 |
+
TCGA-B0-4706-11,0,61,1
|
151 |
+
TCGA-B0-4707-01,1,63,1
|
152 |
+
TCGA-B0-4707-11,0,63,1
|
153 |
+
TCGA-B0-4710-01,1,75,0
|
154 |
+
TCGA-B0-4710-11,0,75,0
|
155 |
+
TCGA-B0-4712-01,1,76,1
|
156 |
+
TCGA-B0-4712-11,0,76,1
|
157 |
+
TCGA-B0-4713-01,1,76,0
|
158 |
+
TCGA-B0-4713-11,0,76,0
|
159 |
+
TCGA-B0-4714-01,1,81,1
|
160 |
+
TCGA-B0-4714-11,0,81,1
|
161 |
+
TCGA-B0-4718-01,1,57,1
|
162 |
+
TCGA-B0-4718-11,0,57,1
|
163 |
+
TCGA-B0-4810-01,1,47,1
|
164 |
+
TCGA-B0-4810-11,0,47,1
|
165 |
+
TCGA-B0-4811-01,1,48,1
|
166 |
+
TCGA-B0-4811-11,0,48,1
|
167 |
+
TCGA-B0-4813-01,1,68,1
|
168 |
+
TCGA-B0-4813-11,0,68,1
|
169 |
+
TCGA-B0-4814-01,1,58,1
|
170 |
+
TCGA-B0-4814-11,0,58,1
|
171 |
+
TCGA-B0-4815-01,1,65,1
|
172 |
+
TCGA-B0-4815-11,0,65,1
|
173 |
+
TCGA-B0-4816-01,1,49,1
|
174 |
+
TCGA-B0-4816-11,0,49,1
|
175 |
+
TCGA-B0-4817-01,1,81,1
|
176 |
+
TCGA-B0-4817-11,0,81,1
|
177 |
+
TCGA-B0-4818-01,1,68,0
|
178 |
+
TCGA-B0-4818-11,0,68,0
|
179 |
+
TCGA-B0-4819-01,1,60,0
|
180 |
+
TCGA-B0-4819-11,0,60,0
|
181 |
+
TCGA-B0-4821-01,1,68,0
|
182 |
+
TCGA-B0-4821-11,0,68,0
|
183 |
+
TCGA-B0-4822-01,1,78,1
|
184 |
+
TCGA-B0-4822-11,0,78,1
|
185 |
+
TCGA-B0-4823-01,1,88,1
|
186 |
+
TCGA-B0-4823-11,0,88,1
|
187 |
+
TCGA-B0-4824-01,1,49,0
|
188 |
+
TCGA-B0-4824-11,0,49,0
|
189 |
+
TCGA-B0-4827-01,1,77,0
|
190 |
+
TCGA-B0-4827-11,0,77,0
|
191 |
+
TCGA-B0-4828-01,1,79,1
|
192 |
+
TCGA-B0-4828-11,0,79,1
|
193 |
+
TCGA-B0-4833-01,1,82,0
|
194 |
+
TCGA-B0-4833-11,0,82,0
|
195 |
+
TCGA-B0-4834-01,1,49,1
|
196 |
+
TCGA-B0-4834-11,0,49,1
|
197 |
+
TCGA-B0-4836-01,1,61,1
|
198 |
+
TCGA-B0-4836-11,0,61,1
|
199 |
+
TCGA-B0-4837-01,1,63,1
|
200 |
+
TCGA-B0-4837-11,0,63,1
|
201 |
+
TCGA-B0-4838-01,1,69,0
|
202 |
+
TCGA-B0-4838-11,0,69,0
|
203 |
+
TCGA-B0-4839-01,1,80,0
|
204 |
+
TCGA-B0-4839-11,0,80,0
|
205 |
+
TCGA-B0-4841-01,1,63,1
|
206 |
+
TCGA-B0-4841-11,0,63,1
|
207 |
+
TCGA-B0-4842-01,1,73,0
|
208 |
+
TCGA-B0-4842-11,0,73,0
|
209 |
+
TCGA-B0-4843-01,1,57,1
|
210 |
+
TCGA-B0-4843-11,0,57,1
|
211 |
+
TCGA-B0-4844-01,1,60,1
|
212 |
+
TCGA-B0-4844-11,0,60,1
|
213 |
+
TCGA-B0-4845-01,1,70,1
|
214 |
+
TCGA-B0-4845-11,0,70,1
|
215 |
+
TCGA-B0-4846-01,1,52,1
|
216 |
+
TCGA-B0-4846-11,0,52,1
|
217 |
+
TCGA-B0-4847-01,1,60,1
|
218 |
+
TCGA-B0-4847-11,0,60,1
|
219 |
+
TCGA-B0-4848-01,1,54,1
|
220 |
+
TCGA-B0-4848-11,0,54,1
|
221 |
+
TCGA-B0-4849-01,1,51,1
|
222 |
+
TCGA-B0-4849-11,0,51,1
|
223 |
+
TCGA-B0-4852-01,1,78,0
|
224 |
+
TCGA-B0-4852-11,0,78,0
|
225 |
+
TCGA-B0-4945-01,1,75,0
|
226 |
+
TCGA-B0-4945-11,0,75,0
|
227 |
+
TCGA-B0-5075-01,1,77,0
|
228 |
+
TCGA-B0-5075-11,0,77,0
|
229 |
+
TCGA-B0-5077-01,1,77,1
|
230 |
+
TCGA-B0-5077-11,0,77,1
|
231 |
+
TCGA-B0-5080-01,1,63,1
|
232 |
+
TCGA-B0-5080-11,0,63,1
|
233 |
+
TCGA-B0-5081-01,1,79,0
|
234 |
+
TCGA-B0-5081-11,0,79,0
|
235 |
+
TCGA-B0-5083-01,1,63,1
|
236 |
+
TCGA-B0-5083-11,0,63,1
|
237 |
+
TCGA-B0-5084-01,1,33,1
|
238 |
+
TCGA-B0-5084-11,0,33,1
|
239 |
+
TCGA-B0-5085-01,1,76,0
|
240 |
+
TCGA-B0-5085-11,0,76,0
|
241 |
+
TCGA-B0-5088-01,1,53,1
|
242 |
+
TCGA-B0-5088-11,0,53,1
|
243 |
+
TCGA-B0-5092-01,1,53,0
|
244 |
+
TCGA-B0-5092-11,0,53,0
|
245 |
+
TCGA-B0-5094-01,1,62,1
|
246 |
+
TCGA-B0-5094-11,0,62,1
|
247 |
+
TCGA-B0-5095-01,1,81,1
|
248 |
+
TCGA-B0-5095-11,0,81,1
|
249 |
+
TCGA-B0-5096-01,1,72,0
|
250 |
+
TCGA-B0-5096-11,0,72,0
|
251 |
+
TCGA-B0-5097-01,1,59,0
|
252 |
+
TCGA-B0-5097-11,0,59,0
|
253 |
+
TCGA-B0-5098-01,1,53,0
|
254 |
+
TCGA-B0-5098-11,0,53,0
|
255 |
+
TCGA-B0-5099-01,1,88,0
|
256 |
+
TCGA-B0-5099-11,0,88,0
|
257 |
+
TCGA-B0-5100-01,1,72,1
|
258 |
+
TCGA-B0-5100-11,0,72,1
|
259 |
+
TCGA-B0-5102-01,1,74,0
|
260 |
+
TCGA-B0-5102-11,0,74,0
|
261 |
+
TCGA-B0-5104-01,1,90,0
|
262 |
+
TCGA-B0-5104-11,0,90,0
|
263 |
+
TCGA-B0-5106-01,1,64,1
|
264 |
+
TCGA-B0-5106-11,0,64,1
|
265 |
+
TCGA-B0-5107-01,1,65,0
|
266 |
+
TCGA-B0-5107-11,0,65,0
|
267 |
+
TCGA-B0-5108-01,1,54,1
|
268 |
+
TCGA-B0-5108-11,0,54,1
|
269 |
+
TCGA-B0-5109-01,1,69,1
|
270 |
+
TCGA-B0-5109-11,0,69,1
|
271 |
+
TCGA-B0-5110-01,1,71,0
|
272 |
+
TCGA-B0-5110-11,0,71,0
|
273 |
+
TCGA-B0-5113-01,1,69,0
|
274 |
+
TCGA-B0-5113-11,0,69,0
|
275 |
+
TCGA-B0-5115-01,1,43,1
|
276 |
+
TCGA-B0-5115-11,0,43,1
|
277 |
+
TCGA-B0-5116-01,1,52,1
|
278 |
+
TCGA-B0-5116-11,0,52,1
|
279 |
+
TCGA-B0-5117-01,1,40,1
|
280 |
+
TCGA-B0-5117-11,0,40,1
|
281 |
+
TCGA-B0-5119-01,1,61,0
|
282 |
+
TCGA-B0-5119-11,0,61,0
|
283 |
+
TCGA-B0-5120-01,1,72,0
|
284 |
+
TCGA-B0-5120-11,0,72,0
|
285 |
+
TCGA-B0-5121-01,1,56,1
|
286 |
+
TCGA-B0-5121-11,0,56,1
|
287 |
+
TCGA-B0-5399-01,1,46,1
|
288 |
+
TCGA-B0-5400-01,1,59,0
|
289 |
+
TCGA-B0-5400-11,0,59,0
|
290 |
+
TCGA-B0-5402-01,1,64,1
|
291 |
+
TCGA-B0-5402-11,0,64,1
|
292 |
+
TCGA-B0-5690-01,1,53,0
|
293 |
+
TCGA-B0-5690-11,0,53,0
|
294 |
+
TCGA-B0-5691-01,1,66,0
|
295 |
+
TCGA-B0-5691-11,0,66,0
|
296 |
+
TCGA-B0-5692-01,1,66,0
|
297 |
+
TCGA-B0-5693-01,1,47,0
|
298 |
+
TCGA-B0-5694-01,1,71,1
|
299 |
+
TCGA-B0-5694-11,0,71,1
|
300 |
+
TCGA-B0-5695-01,1,61,0
|
301 |
+
TCGA-B0-5696-01,1,69,1
|
302 |
+
TCGA-B0-5696-11,0,69,1
|
303 |
+
TCGA-B0-5697-01,1,50,1
|
304 |
+
TCGA-B0-5697-11,0,50,1
|
305 |
+
TCGA-B0-5698-01,1,77,1
|
306 |
+
TCGA-B0-5699-01,1,53,1
|
307 |
+
TCGA-B0-5699-11,0,53,1
|
308 |
+
TCGA-B0-5700-01,1,77,1
|
309 |
+
TCGA-B0-5701-01,1,65,1
|
310 |
+
TCGA-B0-5701-11,0,65,1
|
311 |
+
TCGA-B0-5702-01,1,71,1
|
312 |
+
TCGA-B0-5703-01,1,73,1
|
313 |
+
TCGA-B0-5703-11,0,73,1
|
314 |
+
TCGA-B0-5705-01,1,65,0
|
315 |
+
TCGA-B0-5705-11,0,65,0
|
316 |
+
TCGA-B0-5706-01,1,45,1
|
317 |
+
TCGA-B0-5706-11,0,45,1
|
318 |
+
TCGA-B0-5707-01,1,39,0
|
319 |
+
TCGA-B0-5709-01,1,62,0
|
320 |
+
TCGA-B0-5709-11,0,62,0
|
321 |
+
TCGA-B0-5710-01,1,57,1
|
322 |
+
TCGA-B0-5710-11,0,57,1
|
323 |
+
TCGA-B0-5711-01,1,50,1
|
324 |
+
TCGA-B0-5711-11,0,50,1
|
325 |
+
TCGA-B0-5712-01,1,68,0
|
326 |
+
TCGA-B0-5712-11,0,68,0
|
327 |
+
TCGA-B0-5713-01,1,75,0
|
328 |
+
TCGA-B0-5713-11,0,75,0
|
329 |
+
TCGA-B0-5812-01,1,53,1
|
330 |
+
TCGA-B2-3923-01,1,59,1
|
331 |
+
TCGA-B2-3923-11,0,59,1
|
332 |
+
TCGA-B2-3924-01,1,73,1
|
333 |
+
TCGA-B2-3924-11,0,73,1
|
334 |
+
TCGA-B2-4098-01,1,72,0
|
335 |
+
TCGA-B2-4098-11,0,72,0
|
336 |
+
TCGA-B2-4099-01,1,83,1
|
337 |
+
TCGA-B2-4099-11,0,83,1
|
338 |
+
TCGA-B2-4101-01,1,52,1
|
339 |
+
TCGA-B2-4102-01,1,61,1
|
340 |
+
TCGA-B2-4102-11,0,61,1
|
341 |
+
TCGA-B2-5633-01,1,56,1
|
342 |
+
TCGA-B2-5635-01,1,74,1
|
343 |
+
TCGA-B2-5636-01,1,79,1
|
344 |
+
TCGA-B2-5636-11,0,79,1
|
345 |
+
TCGA-B2-5639-01,1,46,1
|
346 |
+
TCGA-B2-5641-01,1,79,1
|
347 |
+
TCGA-B2-5641-11,0,79,1
|
348 |
+
TCGA-B2-A4SR-01,1,61,1
|
349 |
+
TCGA-B4-5377-01,1,68,0
|
350 |
+
TCGA-B4-5378-01,1,62,1
|
351 |
+
TCGA-B4-5832-01,1,65,1
|
352 |
+
TCGA-B4-5834-01,1,59,1
|
353 |
+
TCGA-B4-5835-01,1,64,0
|
354 |
+
TCGA-B4-5836-01,1,61,0
|
355 |
+
TCGA-B4-5838-01,1,52,1
|
356 |
+
TCGA-B4-5843-01,1,45,1
|
357 |
+
TCGA-B4-5844-01,1,61,0
|
358 |
+
TCGA-B8-4143-01,1,66,0
|
359 |
+
TCGA-B8-4143-11,0,66,0
|
360 |
+
TCGA-B8-4146-01,1,41,0
|
361 |
+
TCGA-B8-4148-01,1,63,0
|
362 |
+
TCGA-B8-4151-01,1,51,0
|
363 |
+
TCGA-B8-4153-01,1,74,1
|
364 |
+
TCGA-B8-4154-01,1,73,0
|
365 |
+
TCGA-B8-4154-11,0,73,0
|
366 |
+
TCGA-B8-4619-01,1,58,1
|
367 |
+
TCGA-B8-4619-11,0,58,1
|
368 |
+
TCGA-B8-4620-01,1,70,0
|
369 |
+
TCGA-B8-4620-11,0,70,0
|
370 |
+
TCGA-B8-4621-01,1,63,1
|
371 |
+
TCGA-B8-4622-01,1,57,1
|
372 |
+
TCGA-B8-4622-11,0,57,1
|
373 |
+
TCGA-B8-5158-01,1,56,1
|
374 |
+
TCGA-B8-5159-01,1,61,0
|
375 |
+
TCGA-B8-5162-01,1,62,1
|
376 |
+
TCGA-B8-5163-01,1,63,0
|
377 |
+
TCGA-B8-5164-01,1,65,1
|
378 |
+
TCGA-B8-5165-01,1,43,1
|
379 |
+
TCGA-B8-5545-01,1,42,1
|
380 |
+
TCGA-B8-5546-01,1,38,0
|
381 |
+
TCGA-B8-5549-01,1,53,1
|
382 |
+
TCGA-B8-5549-11,0,53,1
|
383 |
+
TCGA-B8-5550-01,1,71,1
|
384 |
+
TCGA-B8-5551-01,1,65,0
|
385 |
+
TCGA-B8-5552-01,1,41,0
|
386 |
+
TCGA-B8-5552-11,0,41,0
|
387 |
+
TCGA-B8-5553-01,1,67,0
|
388 |
+
TCGA-B8-A54D-01,1,69,1
|
389 |
+
TCGA-B8-A54E-01,1,62,0
|
390 |
+
TCGA-B8-A54F-01,1,49,0
|
391 |
+
TCGA-B8-A54G-01,1,50,1
|
392 |
+
TCGA-B8-A54H-01,1,69,0
|
393 |
+
TCGA-B8-A54I-01,1,48,1
|
394 |
+
TCGA-B8-A54J-01,1,60,1
|
395 |
+
TCGA-B8-A54K-01,1,61,1
|
396 |
+
TCGA-B8-A7U6-01,1,54,0
|
397 |
+
TCGA-B8-A8YJ-01,1,60,0
|
398 |
+
TCGA-BP-4158-01,1,69,1
|
399 |
+
TCGA-BP-4158-11,0,69,1
|
400 |
+
TCGA-BP-4159-01,1,70,1
|
401 |
+
TCGA-BP-4159-11,0,70,1
|
402 |
+
TCGA-BP-4160-01,1,67,1
|
403 |
+
TCGA-BP-4160-11,0,67,1
|
404 |
+
TCGA-BP-4161-01,1,74,1
|
405 |
+
TCGA-BP-4161-11,0,74,1
|
406 |
+
TCGA-BP-4162-01,1,65,0
|
407 |
+
TCGA-BP-4162-11,0,65,0
|
408 |
+
TCGA-BP-4163-01,1,60,0
|
409 |
+
TCGA-BP-4163-11,0,60,0
|
410 |
+
TCGA-BP-4164-01,1,51,0
|
411 |
+
TCGA-BP-4164-11,0,51,0
|
412 |
+
TCGA-BP-4165-01,1,64,0
|
413 |
+
TCGA-BP-4165-11,0,64,0
|
414 |
+
TCGA-BP-4166-01,1,69,1
|
415 |
+
TCGA-BP-4166-11,0,69,1
|
416 |
+
TCGA-BP-4167-01,1,59,1
|
417 |
+
TCGA-BP-4167-11,0,59,1
|
418 |
+
TCGA-BP-4169-01,1,76,0
|
419 |
+
TCGA-BP-4169-11,0,76,0
|
420 |
+
TCGA-BP-4170-01,1,72,0
|
421 |
+
TCGA-BP-4170-11,0,72,0
|
422 |
+
TCGA-BP-4173-01,1,47,1
|
423 |
+
TCGA-BP-4173-11,0,47,1
|
424 |
+
TCGA-BP-4174-01,1,49,1
|
425 |
+
TCGA-BP-4174-11,0,49,1
|
426 |
+
TCGA-BP-4176-01,1,64,1
|
427 |
+
TCGA-BP-4176-11,0,64,1
|
428 |
+
TCGA-BP-4177-01,1,65,1
|
429 |
+
TCGA-BP-4177-11,0,65,1
|
430 |
+
TCGA-BP-4325-01,1,64,0
|
431 |
+
TCGA-BP-4325-11,0,64,0
|
432 |
+
TCGA-BP-4326-01,1,53,0
|
433 |
+
TCGA-BP-4326-11,0,53,0
|
434 |
+
TCGA-BP-4327-01,1,75,0
|
435 |
+
TCGA-BP-4327-11,0,75,0
|
436 |
+
TCGA-BP-4329-01,1,75,1
|
437 |
+
TCGA-BP-4329-11,0,75,1
|
438 |
+
TCGA-BP-4330-01,1,60,0
|
439 |
+
TCGA-BP-4330-11,0,60,0
|
440 |
+
TCGA-BP-4331-01,1,52,1
|
441 |
+
TCGA-BP-4331-11,0,52,1
|
442 |
+
TCGA-BP-4332-01,1,36,1
|
443 |
+
TCGA-BP-4332-11,0,36,1
|
444 |
+
TCGA-BP-4334-01,1,56,1
|
445 |
+
TCGA-BP-4334-11,0,56,1
|
446 |
+
TCGA-BP-4335-01,1,65,0
|
447 |
+
TCGA-BP-4335-11,0,65,0
|
448 |
+
TCGA-BP-4337-01,1,76,0
|
449 |
+
TCGA-BP-4337-11,0,76,0
|
450 |
+
TCGA-BP-4338-01,1,43,1
|
451 |
+
TCGA-BP-4338-11,0,43,1
|
452 |
+
TCGA-BP-4340-01,1,70,0
|
453 |
+
TCGA-BP-4340-11,0,70,0
|
454 |
+
TCGA-BP-4341-01,1,67,1
|
455 |
+
TCGA-BP-4341-11,0,67,1
|
456 |
+
TCGA-BP-4342-01,1,79,1
|
457 |
+
TCGA-BP-4342-11,0,79,1
|
458 |
+
TCGA-BP-4343-01,1,64,1
|
459 |
+
TCGA-BP-4343-11,0,64,1
|
460 |
+
TCGA-BP-4344-01,1,75,0
|
461 |
+
TCGA-BP-4344-11,0,75,0
|
462 |
+
TCGA-BP-4345-01,1,62,1
|
463 |
+
TCGA-BP-4345-11,0,62,1
|
464 |
+
TCGA-BP-4346-01,1,57,1
|
465 |
+
TCGA-BP-4346-11,0,57,1
|
466 |
+
TCGA-BP-4347-01,1,74,1
|
467 |
+
TCGA-BP-4347-11,0,74,1
|
468 |
+
TCGA-BP-4349-01,1,68,0
|
469 |
+
TCGA-BP-4349-11,0,68,0
|
470 |
+
TCGA-BP-4351-01,1,51,0
|
471 |
+
TCGA-BP-4351-11,0,51,0
|
472 |
+
TCGA-BP-4352-01,1,74,0
|
473 |
+
TCGA-BP-4352-11,0,74,0
|
474 |
+
TCGA-BP-4353-01,1,61,1
|
475 |
+
TCGA-BP-4353-11,0,61,1
|
476 |
+
TCGA-BP-4354-01,1,40,1
|
477 |
+
TCGA-BP-4354-11,0,40,1
|
478 |
+
TCGA-BP-4355-01,1,59,0
|
479 |
+
TCGA-BP-4355-11,0,59,0
|
480 |
+
TCGA-BP-4756-01,1,62,0
|
481 |
+
TCGA-BP-4756-11,0,62,0
|
482 |
+
TCGA-BP-4758-01,1,40,1
|
483 |
+
TCGA-BP-4758-11,0,40,1
|
484 |
+
TCGA-BP-4759-01,1,50,1
|
485 |
+
TCGA-BP-4759-11,0,50,1
|
486 |
+
TCGA-BP-4760-01,1,69,1
|
487 |
+
TCGA-BP-4760-11,0,69,1
|
488 |
+
TCGA-BP-4761-01,1,57,1
|
489 |
+
TCGA-BP-4761-11,0,57,1
|
490 |
+
TCGA-BP-4762-01,1,42,1
|
491 |
+
TCGA-BP-4762-11,0,42,1
|
492 |
+
TCGA-BP-4763-01,1,79,0
|
493 |
+
TCGA-BP-4763-11,0,79,0
|
494 |
+
TCGA-BP-4765-01,1,43,1
|
495 |
+
TCGA-BP-4765-11,0,43,1
|
496 |
+
TCGA-BP-4766-01,1,43,0
|
497 |
+
TCGA-BP-4766-11,0,43,0
|
498 |
+
TCGA-BP-4768-01,1,72,0
|
499 |
+
TCGA-BP-4768-11,0,72,0
|
500 |
+
TCGA-BP-4769-01,1,63,1
|
501 |
+
TCGA-BP-4769-11,0,63,1
|
502 |
+
TCGA-BP-4770-01,1,73,0
|
503 |
+
TCGA-BP-4770-11,0,73,0
|
504 |
+
TCGA-BP-4771-01,1,62,1
|
505 |
+
TCGA-BP-4771-11,0,62,1
|
506 |
+
TCGA-BP-4774-01,1,57,0
|
507 |
+
TCGA-BP-4774-11,0,57,0
|
508 |
+
TCGA-BP-4775-01,1,55,0
|
509 |
+
TCGA-BP-4775-11,0,55,0
|
510 |
+
TCGA-BP-4776-01,1,52,1
|
511 |
+
TCGA-BP-4776-11,0,52,1
|
512 |
+
TCGA-BP-4777-01,1,46,1
|
513 |
+
TCGA-BP-4777-11,0,46,1
|
514 |
+
TCGA-BP-4781-01,1,78,1
|
515 |
+
TCGA-BP-4781-11,0,78,1
|
516 |
+
TCGA-BP-4782-01,1,55,0
|
517 |
+
TCGA-BP-4782-11,0,55,0
|
518 |
+
TCGA-BP-4784-01,1,67,0
|
519 |
+
TCGA-BP-4784-11,0,67,0
|
520 |
+
TCGA-BP-4787-01,1,59,0
|
521 |
+
TCGA-BP-4787-11,0,59,0
|
522 |
+
TCGA-BP-4789-01,1,48,1
|
523 |
+
TCGA-BP-4789-11,0,48,1
|
524 |
+
TCGA-BP-4790-01,1,76,1
|
525 |
+
TCGA-BP-4790-11,0,76,1
|
526 |
+
TCGA-BP-4795-01,1,74,0
|
527 |
+
TCGA-BP-4795-11,0,74,0
|
528 |
+
TCGA-BP-4797-01,1,34,1
|
529 |
+
TCGA-BP-4797-11,0,34,1
|
530 |
+
TCGA-BP-4798-01,1,74,1
|
531 |
+
TCGA-BP-4798-11,0,74,1
|
532 |
+
TCGA-BP-4799-01,1,70,1
|
533 |
+
TCGA-BP-4799-11,0,70,1
|
534 |
+
TCGA-BP-4801-01,1,57,1
|
535 |
+
TCGA-BP-4801-11,0,57,1
|
536 |
+
TCGA-BP-4803-01,1,79,1
|
537 |
+
TCGA-BP-4803-11,0,79,1
|
538 |
+
TCGA-BP-4804-01,1,59,1
|
539 |
+
TCGA-BP-4804-11,0,59,1
|
540 |
+
TCGA-BP-4807-01,1,42,1
|
541 |
+
TCGA-BP-4807-11,0,42,1
|
542 |
+
TCGA-BP-4959-01,1,49,1
|
543 |
+
TCGA-BP-4959-11,0,49,1
|
544 |
+
TCGA-BP-4960-01,1,46,1
|
545 |
+
TCGA-BP-4960-11,0,46,1
|
546 |
+
TCGA-BP-4961-01,1,47,1
|
547 |
+
TCGA-BP-4961-11,0,47,1
|
548 |
+
TCGA-BP-4962-01,1,58,1
|
549 |
+
TCGA-BP-4962-11,0,58,1
|
550 |
+
TCGA-BP-4963-01,1,63,1
|
551 |
+
TCGA-BP-4963-11,0,63,1
|
552 |
+
TCGA-BP-4964-01,1,54,0
|
553 |
+
TCGA-BP-4964-11,0,54,0
|
554 |
+
TCGA-BP-4965-01,1,46,1
|
555 |
+
TCGA-BP-4965-11,0,46,1
|
556 |
+
TCGA-BP-4967-01,1,76,1
|
557 |
+
TCGA-BP-4967-11,0,76,1
|
558 |
+
TCGA-BP-4968-01,1,40,1
|
559 |
+
TCGA-BP-4968-11,0,40,1
|
560 |
+
TCGA-BP-4969-01,1,63,0
|
561 |
+
TCGA-BP-4969-11,0,63,0
|
562 |
+
TCGA-BP-4970-01,1,44,1
|
563 |
+
TCGA-BP-4970-11,0,44,1
|
564 |
+
TCGA-BP-4971-01,1,40,1
|
565 |
+
TCGA-BP-4971-11,0,40,1
|
566 |
+
TCGA-BP-4972-01,1,43,0
|
567 |
+
TCGA-BP-4972-11,0,43,0
|
568 |
+
TCGA-BP-4973-01,1,47,1
|
569 |
+
TCGA-BP-4973-11,0,47,1
|
570 |
+
TCGA-BP-4974-01,1,58,1
|
571 |
+
TCGA-BP-4974-11,0,58,1
|
572 |
+
TCGA-BP-4975-01,1,40,1
|
573 |
+
TCGA-BP-4975-11,0,40,1
|
574 |
+
TCGA-BP-4976-01,1,77,1
|
575 |
+
TCGA-BP-4976-11,0,77,1
|
576 |
+
TCGA-BP-4977-01,1,57,1
|
577 |
+
TCGA-BP-4977-11,0,57,1
|
578 |
+
TCGA-BP-4981-01,1,75,0
|
579 |
+
TCGA-BP-4981-11,0,75,0
|
580 |
+
TCGA-BP-4982-01,1,42,1
|
581 |
+
TCGA-BP-4982-11,0,42,1
|
582 |
+
TCGA-BP-4983-01,1,67,0
|
583 |
+
TCGA-BP-4983-11,0,67,0
|
584 |
+
TCGA-BP-4985-01,1,72,1
|
585 |
+
TCGA-BP-4985-11,0,72,1
|
586 |
+
TCGA-BP-4986-01,1,75,1
|
587 |
+
TCGA-BP-4986-11,0,75,1
|
588 |
+
TCGA-BP-4987-01,1,41,0
|
589 |
+
TCGA-BP-4987-11,0,41,0
|
590 |
+
TCGA-BP-4988-01,1,72,1
|
591 |
+
TCGA-BP-4988-11,0,72,1
|
592 |
+
TCGA-BP-4989-01,1,58,1
|
593 |
+
TCGA-BP-4989-11,0,58,1
|
594 |
+
TCGA-BP-4991-01,1,54,1
|
595 |
+
TCGA-BP-4991-11,0,54,1
|
596 |
+
TCGA-BP-4992-01,1,66,1
|
597 |
+
TCGA-BP-4992-11,0,66,1
|
598 |
+
TCGA-BP-4993-01,1,58,1
|
599 |
+
TCGA-BP-4993-11,0,58,1
|
600 |
+
TCGA-BP-4994-01,1,54,1
|
601 |
+
TCGA-BP-4994-11,0,54,1
|
602 |
+
TCGA-BP-4995-01,1,68,1
|
603 |
+
TCGA-BP-4995-11,0,68,1
|
604 |
+
TCGA-BP-4998-01,1,49,1
|
605 |
+
TCGA-BP-4998-11,0,49,1
|
606 |
+
TCGA-BP-4999-01,1,56,1
|
607 |
+
TCGA-BP-4999-11,0,56,1
|
608 |
+
TCGA-BP-5000-01,1,40,1
|
609 |
+
TCGA-BP-5000-11,0,40,1
|
610 |
+
TCGA-BP-5001-01,1,43,0
|
611 |
+
TCGA-BP-5001-11,0,43,0
|
612 |
+
TCGA-BP-5004-01,1,53,1
|
613 |
+
TCGA-BP-5004-11,0,53,1
|
614 |
+
TCGA-BP-5006-01,1,61,1
|
615 |
+
TCGA-BP-5006-11,0,61,1
|
616 |
+
TCGA-BP-5007-01,1,45,1
|
617 |
+
TCGA-BP-5007-11,0,45,1
|
618 |
+
TCGA-BP-5008-01,1,46,1
|
619 |
+
TCGA-BP-5008-11,0,46,1
|
620 |
+
TCGA-BP-5009-01,1,52,1
|
621 |
+
TCGA-BP-5009-11,0,52,1
|
622 |
+
TCGA-BP-5010-01,1,63,1
|
623 |
+
TCGA-BP-5010-11,0,63,1
|
624 |
+
TCGA-BP-5168-01,1,75,1
|
625 |
+
TCGA-BP-5168-11,0,75,1
|
626 |
+
TCGA-BP-5169-01,1,70,1
|
627 |
+
TCGA-BP-5169-11,0,70,1
|
628 |
+
TCGA-BP-5170-01,1,55,1
|
629 |
+
TCGA-BP-5170-11,0,55,1
|
630 |
+
TCGA-BP-5173-01,1,75,1
|
631 |
+
TCGA-BP-5173-11,0,75,1
|
632 |
+
TCGA-BP-5174-01,1,45,0
|
633 |
+
TCGA-BP-5174-11,0,45,0
|
634 |
+
TCGA-BP-5175-01,1,60,1
|
635 |
+
TCGA-BP-5175-11,0,60,1
|
636 |
+
TCGA-BP-5176-01,1,78,0
|
637 |
+
TCGA-BP-5176-11,0,78,0
|
638 |
+
TCGA-BP-5177-01,1,46,0
|
639 |
+
TCGA-BP-5177-11,0,46,0
|
640 |
+
TCGA-BP-5178-01,1,71,1
|
641 |
+
TCGA-BP-5178-11,0,71,1
|
642 |
+
TCGA-BP-5180-01,1,53,1
|
643 |
+
TCGA-BP-5180-11,0,53,1
|
644 |
+
TCGA-BP-5181-01,1,58,0
|
645 |
+
TCGA-BP-5181-11,0,58,0
|
646 |
+
TCGA-BP-5182-01,1,56,1
|
647 |
+
TCGA-BP-5182-11,0,56,1
|
648 |
+
TCGA-BP-5183-01,1,57,1
|
649 |
+
TCGA-BP-5183-11,0,57,1
|
650 |
+
TCGA-BP-5184-01,1,54,1
|
651 |
+
TCGA-BP-5184-11,0,54,1
|
652 |
+
TCGA-BP-5185-01,1,56,1
|
653 |
+
TCGA-BP-5185-11,0,56,1
|
654 |
+
TCGA-BP-5186-01,1,50,0
|
655 |
+
TCGA-BP-5186-11,0,50,0
|
656 |
+
TCGA-BP-5187-01,1,54,1
|
657 |
+
TCGA-BP-5187-11,0,54,1
|
658 |
+
TCGA-BP-5189-01,1,60,1
|
659 |
+
TCGA-BP-5189-11,0,60,1
|
660 |
+
TCGA-BP-5190-01,1,61,1
|
661 |
+
TCGA-BP-5190-11,0,61,1
|
662 |
+
TCGA-BP-5191-01,1,79,1
|
663 |
+
TCGA-BP-5191-11,0,79,1
|
664 |
+
TCGA-BP-5192-01,1,59,1
|
665 |
+
TCGA-BP-5192-11,0,59,1
|
666 |
+
TCGA-BP-5194-01,1,39,1
|
667 |
+
TCGA-BP-5194-11,0,39,1
|
668 |
+
TCGA-BP-5195-01,1,75,1
|
669 |
+
TCGA-BP-5195-11,0,75,1
|
670 |
+
TCGA-BP-5196-01,1,53,1
|
671 |
+
TCGA-BP-5196-11,0,53,1
|
672 |
+
TCGA-BP-5198-01,1,72,1
|
673 |
+
TCGA-BP-5198-11,0,72,1
|
674 |
+
TCGA-BP-5199-01,1,58,1
|
675 |
+
TCGA-BP-5199-11,0,58,1
|
676 |
+
TCGA-BP-5200-01,1,44,1
|
677 |
+
TCGA-BP-5200-11,0,44,1
|
678 |
+
TCGA-BP-5201-01,1,63,1
|
679 |
+
TCGA-BP-5201-11,0,63,1
|
680 |
+
TCGA-BP-5202-01,1,75,1
|
681 |
+
TCGA-BP-5202-11,0,75,1
|
682 |
+
TCGA-CJ-4634-01,1,60,0
|
683 |
+
TCGA-CJ-4634-11,0,60,0
|
684 |
+
TCGA-CJ-4635-01,1,48,1
|
685 |
+
TCGA-CJ-4635-11,0,48,1
|
686 |
+
TCGA-CJ-4636-01,1,51,1
|
687 |
+
TCGA-CJ-4636-11,0,51,1
|
688 |
+
TCGA-CJ-4637-01,1,52,0
|
689 |
+
TCGA-CJ-4637-11,0,52,0
|
690 |
+
TCGA-CJ-4638-01,1,46,0
|
691 |
+
TCGA-CJ-4638-11,0,46,0
|
692 |
+
TCGA-CJ-4639-01,1,49,0
|
693 |
+
TCGA-CJ-4639-11,0,49,0
|
694 |
+
TCGA-CJ-4640-01,1,49,1
|
695 |
+
TCGA-CJ-4640-11,0,49,1
|
696 |
+
TCGA-CJ-4641-01,1,55,0
|
697 |
+
TCGA-CJ-4641-11,0,55,0
|
698 |
+
TCGA-CJ-4642-01,1,47,1
|
699 |
+
TCGA-CJ-4642-11,0,47,1
|
700 |
+
TCGA-CJ-4643-01,1,67,0
|
701 |
+
TCGA-CJ-4643-11,0,67,0
|
702 |
+
TCGA-CJ-4644-01,1,48,0
|
703 |
+
TCGA-CJ-4644-11,0,48,0
|
704 |
+
TCGA-CJ-4868-01,1,42,1
|
705 |
+
TCGA-CJ-4868-11,0,42,1
|
706 |
+
TCGA-CJ-4869-01,1,49,1
|
707 |
+
TCGA-CJ-4869-11,0,49,1
|
708 |
+
TCGA-CJ-4870-01,1,58,0
|
709 |
+
TCGA-CJ-4870-11,0,58,0
|
710 |
+
TCGA-CJ-4871-01,1,63,1
|
711 |
+
TCGA-CJ-4871-11,0,63,1
|
712 |
+
TCGA-CJ-4872-01,1,51,1
|
713 |
+
TCGA-CJ-4872-11,0,51,1
|
714 |
+
TCGA-CJ-4873-01,1,85,0
|
715 |
+
TCGA-CJ-4873-11,0,85,0
|
716 |
+
TCGA-CJ-4874-01,1,73,0
|
717 |
+
TCGA-CJ-4874-11,0,73,0
|
718 |
+
TCGA-CJ-4875-01,1,67,1
|
719 |
+
TCGA-CJ-4875-11,0,67,1
|
720 |
+
TCGA-CJ-4876-01,1,57,1
|
721 |
+
TCGA-CJ-4876-11,0,57,1
|
722 |
+
TCGA-CJ-4878-01,1,71,0
|
723 |
+
TCGA-CJ-4878-11,0,71,0
|
724 |
+
TCGA-CJ-4881-01,1,41,1
|
725 |
+
TCGA-CJ-4881-11,0,41,1
|
726 |
+
TCGA-CJ-4882-01,1,57,1
|
727 |
+
TCGA-CJ-4882-11,0,57,1
|
728 |
+
TCGA-CJ-4884-01,1,72,0
|
729 |
+
TCGA-CJ-4884-11,0,72,0
|
730 |
+
TCGA-CJ-4885-01,1,64,1
|
731 |
+
TCGA-CJ-4885-11,0,64,1
|
732 |
+
TCGA-CJ-4886-01,1,42,0
|
733 |
+
TCGA-CJ-4886-11,0,42,0
|
734 |
+
TCGA-CJ-4887-01,1,48,1
|
735 |
+
TCGA-CJ-4887-11,0,48,1
|
736 |
+
TCGA-CJ-4888-01,1,59,1
|
737 |
+
TCGA-CJ-4888-11,0,59,1
|
738 |
+
TCGA-CJ-4889-01,1,63,0
|
739 |
+
TCGA-CJ-4889-11,0,63,0
|
740 |
+
TCGA-CJ-4890-01,1,72,1
|
741 |
+
TCGA-CJ-4890-11,0,72,1
|
742 |
+
TCGA-CJ-4891-01,1,57,0
|
743 |
+
TCGA-CJ-4891-11,0,57,0
|
744 |
+
TCGA-CJ-4892-01,1,65,0
|
745 |
+
TCGA-CJ-4892-11,0,65,0
|
746 |
+
TCGA-CJ-4893-01,1,76,0
|
747 |
+
TCGA-CJ-4893-11,0,76,0
|
748 |
+
TCGA-CJ-4894-01,1,58,1
|
749 |
+
TCGA-CJ-4894-11,0,58,1
|
750 |
+
TCGA-CJ-4895-01,1,62,1
|
751 |
+
TCGA-CJ-4895-11,0,62,1
|
752 |
+
TCGA-CJ-4897-01,1,79,0
|
753 |
+
TCGA-CJ-4897-11,0,79,0
|
754 |
+
TCGA-CJ-4899-01,1,42,1
|
755 |
+
TCGA-CJ-4899-11,0,42,1
|
756 |
+
TCGA-CJ-4900-01,1,69,0
|
757 |
+
TCGA-CJ-4900-11,0,69,0
|
758 |
+
TCGA-CJ-4901-01,1,47,1
|
759 |
+
TCGA-CJ-4901-11,0,47,1
|
760 |
+
TCGA-CJ-4902-01,1,61,1
|
761 |
+
TCGA-CJ-4902-11,0,61,1
|
762 |
+
TCGA-CJ-4903-01,1,50,1
|
763 |
+
TCGA-CJ-4903-11,0,50,1
|
764 |
+
TCGA-CJ-4904-01,1,60,0
|
765 |
+
TCGA-CJ-4904-11,0,60,0
|
766 |
+
TCGA-CJ-4905-01,1,62,0
|
767 |
+
TCGA-CJ-4905-11,0,62,0
|
768 |
+
TCGA-CJ-4907-01,1,58,1
|
769 |
+
TCGA-CJ-4907-11,0,58,1
|
770 |
+
TCGA-CJ-4908-01,1,38,1
|
771 |
+
TCGA-CJ-4908-11,0,38,1
|
772 |
+
TCGA-CJ-4912-01,1,61,1
|
773 |
+
TCGA-CJ-4912-11,0,61,1
|
774 |
+
TCGA-CJ-4913-01,1,45,0
|
775 |
+
TCGA-CJ-4913-11,0,45,0
|
776 |
+
TCGA-CJ-4916-01,1,69,0
|
777 |
+
TCGA-CJ-4916-11,0,69,0
|
778 |
+
TCGA-CJ-4918-01,1,64,1
|
779 |
+
TCGA-CJ-4918-11,0,64,1
|
780 |
+
TCGA-CJ-4920-01,1,64,0
|
781 |
+
TCGA-CJ-4920-11,0,64,0
|
782 |
+
TCGA-CJ-4923-01,1,63,0
|
783 |
+
TCGA-CJ-4923-11,0,63,0
|
784 |
+
TCGA-CJ-5671-01,1,51,1
|
785 |
+
TCGA-CJ-5672-01,1,84,1
|
786 |
+
TCGA-CJ-5672-11,0,84,1
|
787 |
+
TCGA-CJ-5675-01,1,70,1
|
788 |
+
TCGA-CJ-5676-01,1,47,1
|
789 |
+
TCGA-CJ-5676-11,0,47,1
|
790 |
+
TCGA-CJ-5677-01,1,54,0
|
791 |
+
TCGA-CJ-5677-11,0,54,0
|
792 |
+
TCGA-CJ-5678-01,1,62,1
|
793 |
+
TCGA-CJ-5678-11,0,62,1
|
794 |
+
TCGA-CJ-5679-01,1,73,1
|
795 |
+
TCGA-CJ-5679-11,0,73,1
|
796 |
+
TCGA-CJ-5680-01,1,65,0
|
797 |
+
TCGA-CJ-5680-11,0,65,0
|
798 |
+
TCGA-CJ-5681-01,1,44,0
|
799 |
+
TCGA-CJ-5681-11,0,44,0
|
800 |
+
TCGA-CJ-5682-01,1,60,1
|
801 |
+
TCGA-CJ-5683-01,1,78,1
|
802 |
+
TCGA-CJ-5684-01,1,61,1
|
803 |
+
TCGA-CJ-5686-01,1,59,0
|
804 |
+
TCGA-CJ-5689-01,1,90,1
|
805 |
+
TCGA-CJ-5689-11,0,90,1
|
806 |
+
TCGA-CJ-6027-01,1,77,1
|
807 |
+
TCGA-CJ-6028-01,1,58,1
|
808 |
+
TCGA-CJ-6030-01,1,65,1
|
809 |
+
TCGA-CJ-6030-11,0,65,1
|
810 |
+
TCGA-CJ-6031-01,1,54,1
|
811 |
+
TCGA-CJ-6032-01,1,63,0
|
812 |
+
TCGA-CJ-6033-01,1,54,0
|
813 |
+
TCGA-CJ-6033-11,0,54,0
|
814 |
+
TCGA-CW-5580-01,1,73,0
|
815 |
+
TCGA-CW-5580-11,0,73,0
|
816 |
+
TCGA-CW-5581-01,1,44,1
|
817 |
+
TCGA-CW-5581-11,0,44,1
|
818 |
+
TCGA-CW-5583-01,1,51,0
|
819 |
+
TCGA-CW-5584-01,1,74,1
|
820 |
+
TCGA-CW-5584-11,0,74,1
|
821 |
+
TCGA-CW-5585-01,1,51,1
|
822 |
+
TCGA-CW-5585-11,0,51,1
|
823 |
+
TCGA-CW-5587-01,1,62,0
|
824 |
+
TCGA-CW-5587-11,0,62,0
|
825 |
+
TCGA-CW-5588-01,1,78,0
|
826 |
+
TCGA-CW-5589-01,1,52,1
|
827 |
+
TCGA-CW-5589-11,0,52,1
|
828 |
+
TCGA-CW-5590-01,1,51,1
|
829 |
+
TCGA-CW-5591-01,1,56,1
|
830 |
+
TCGA-CW-5591-11,0,56,1
|
831 |
+
TCGA-CW-6087-01,1,61,1
|
832 |
+
TCGA-CW-6087-11,0,61,1
|
833 |
+
TCGA-CW-6088-01,1,60,1
|
834 |
+
TCGA-CW-6088-11,0,60,1
|
835 |
+
TCGA-CW-6090-01,1,68,1
|
836 |
+
TCGA-CW-6090-11,0,68,1
|
837 |
+
TCGA-CW-6093-01,1,73,1
|
838 |
+
TCGA-CW-6096-01,1,44,0
|
839 |
+
TCGA-CW-6097-01,1,32,1
|
840 |
+
TCGA-CZ-4853-01,1,82,1
|
841 |
+
TCGA-CZ-4853-11,0,82,1
|
842 |
+
TCGA-CZ-4854-01,1,68,1
|
843 |
+
TCGA-CZ-4854-11,0,68,1
|
844 |
+
TCGA-CZ-4856-01,1,62,0
|
845 |
+
TCGA-CZ-4856-11,0,62,0
|
846 |
+
TCGA-CZ-4857-01,1,56,1
|
847 |
+
TCGA-CZ-4857-11,0,56,1
|
848 |
+
TCGA-CZ-4858-01,1,39,1
|
849 |
+
TCGA-CZ-4858-11,0,39,1
|
850 |
+
TCGA-CZ-4859-01,1,59,0
|
851 |
+
TCGA-CZ-4859-11,0,59,0
|
852 |
+
TCGA-CZ-4860-01,1,60,1
|
853 |
+
TCGA-CZ-4860-11,0,60,1
|
854 |
+
TCGA-CZ-4861-01,1,63,1
|
855 |
+
TCGA-CZ-4861-11,0,63,1
|
856 |
+
TCGA-CZ-4862-01,1,46,1
|
857 |
+
TCGA-CZ-4862-11,0,46,1
|
858 |
+
TCGA-CZ-4863-01,1,51,0
|
859 |
+
TCGA-CZ-4863-11,0,51,0
|
860 |
+
TCGA-CZ-4864-01,1,86,1
|
861 |
+
TCGA-CZ-4864-11,0,86,1
|
862 |
+
TCGA-CZ-4865-01,1,70,0
|
863 |
+
TCGA-CZ-4865-11,0,70,0
|
864 |
+
TCGA-CZ-4866-01,1,79,0
|
865 |
+
TCGA-CZ-4866-11,0,79,0
|
866 |
+
TCGA-CZ-5451-01,1,74,1
|
867 |
+
TCGA-CZ-5451-11,0,74,1
|
868 |
+
TCGA-CZ-5452-01,1,69,1
|
869 |
+
TCGA-CZ-5452-11,0,69,1
|
870 |
+
TCGA-CZ-5453-01,1,67,1
|
871 |
+
TCGA-CZ-5453-11,0,67,1
|
872 |
+
TCGA-CZ-5454-01,1,63,1
|
873 |
+
TCGA-CZ-5454-11,0,63,1
|
874 |
+
TCGA-CZ-5455-01,1,63,1
|
875 |
+
TCGA-CZ-5455-11,0,63,1
|
876 |
+
TCGA-CZ-5456-01,1,57,1
|
877 |
+
TCGA-CZ-5456-11,0,57,1
|
878 |
+
TCGA-CZ-5457-01,1,62,1
|
879 |
+
TCGA-CZ-5457-11,0,62,1
|
880 |
+
TCGA-CZ-5458-01,1,43,1
|
881 |
+
TCGA-CZ-5458-11,0,43,1
|
882 |
+
TCGA-CZ-5459-01,1,63,1
|
883 |
+
TCGA-CZ-5459-11,0,63,1
|
884 |
+
TCGA-CZ-5460-01,1,55,1
|
885 |
+
TCGA-CZ-5460-11,0,55,1
|
886 |
+
TCGA-CZ-5461-01,1,52,1
|
887 |
+
TCGA-CZ-5461-11,0,52,1
|
888 |
+
TCGA-CZ-5462-01,1,83,1
|
889 |
+
TCGA-CZ-5462-11,0,83,1
|
890 |
+
TCGA-CZ-5463-01,1,76,1
|
891 |
+
TCGA-CZ-5463-11,0,76,1
|
892 |
+
TCGA-CZ-5464-01,1,69,1
|
893 |
+
TCGA-CZ-5464-11,0,69,1
|
894 |
+
TCGA-CZ-5465-01,1,76,0
|
895 |
+
TCGA-CZ-5465-11,0,76,0
|
896 |
+
TCGA-CZ-5466-01,1,67,1
|
897 |
+
TCGA-CZ-5466-11,0,67,1
|
898 |
+
TCGA-CZ-5467-01,1,86,0
|
899 |
+
TCGA-CZ-5467-11,0,86,0
|
900 |
+
TCGA-CZ-5468-01,1,84,1
|
901 |
+
TCGA-CZ-5468-11,0,84,1
|
902 |
+
TCGA-CZ-5469-01,1,41,1
|
903 |
+
TCGA-CZ-5469-11,0,41,1
|
904 |
+
TCGA-CZ-5470-01,1,72,0
|
905 |
+
TCGA-CZ-5470-11,0,72,0
|
906 |
+
TCGA-CZ-5982-01,1,59,0
|
907 |
+
TCGA-CZ-5982-11,0,59,0
|
908 |
+
TCGA-CZ-5984-01,1,51,1
|
909 |
+
TCGA-CZ-5984-11,0,51,1
|
910 |
+
TCGA-CZ-5985-01,1,58,1
|
911 |
+
TCGA-CZ-5985-11,0,58,1
|
912 |
+
TCGA-CZ-5986-01,1,61,1
|
913 |
+
TCGA-CZ-5986-11,0,61,1
|
914 |
+
TCGA-CZ-5987-01,1,60,1
|
915 |
+
TCGA-CZ-5987-11,0,60,1
|
916 |
+
TCGA-CZ-5988-01,1,38,1
|
917 |
+
TCGA-CZ-5988-11,0,38,1
|
918 |
+
TCGA-CZ-5989-01,1,60,1
|
919 |
+
TCGA-CZ-5989-11,0,60,1
|
920 |
+
TCGA-DV-5565-01,1,59,1
|
921 |
+
TCGA-DV-5566-01,1,67,0
|
922 |
+
TCGA-DV-5567-01,1,40,0
|
923 |
+
TCGA-DV-5568-01,1,26,1
|
924 |
+
TCGA-DV-5569-01,1,29,0
|
925 |
+
TCGA-DV-5573-01,1,41,1
|
926 |
+
TCGA-DV-5574-01,1,37,1
|
927 |
+
TCGA-DV-5575-01,1,52,0
|
928 |
+
TCGA-DV-5576-01,1,55,0
|
929 |
+
TCGA-DV-A4VX-01,1,59,1
|
930 |
+
TCGA-DV-A4VZ-01,1,53,1
|
931 |
+
TCGA-DV-A4W0-01,1,55,1
|
932 |
+
TCGA-DV-A4W0-05,1,55,1
|
933 |
+
TCGA-EU-5904-01,1,47,0
|
934 |
+
TCGA-EU-5905-01,1,67,0
|
935 |
+
TCGA-EU-5906-01,1,55,1
|
936 |
+
TCGA-EU-5907-01,1,81,1
|
937 |
+
TCGA-G6-A5PC-01,1,54,0
|
938 |
+
TCGA-G6-A8L6-01,1,55,1
|
939 |
+
TCGA-G6-A8L7-01,1,81,0
|
940 |
+
TCGA-G6-A8L8-01,1,62,0
|
941 |
+
TCGA-GK-A6C7-01,1,76,0
|
942 |
+
TCGA-MM-A563-01,1,41,1
|
943 |
+
TCGA-MM-A564-01,1,68,1
|
944 |
+
TCGA-MM-A84U-01,1,58,0
|
945 |
+
TCGA-MW-A4EC-01,1,72,0
|
946 |
+
TCGA-T7-A92I-01,1,47,0
|
p3/preprocess/Kidney_Clear_Cell_Carcinoma/code/GSE102807.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Kidney_Clear_Cell_Carcinoma"
|
6 |
+
cohort = "GSE102807"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Kidney_Clear_Cell_Carcinoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Kidney_Clear_Cell_Carcinoma/GSE102807"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/GSE102807.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/gene_data/GSE102807.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/clinical_data/GSE102807.csv"
|
16 |
+
json_path = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data from SOFT file instead of matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(soft_file_path)
|
23 |
+
|
24 |
+
# Get unique values for each clinical feature
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background information
|
28 |
+
print("Background Information:")
|
29 |
+
print(background_info)
|
30 |
+
print("\nSample Characteristics:")
|
31 |
+
print(json.dumps(unique_values_dict, indent=2))
|
32 |
+
# Gene expression data availability
|
33 |
+
is_gene_available = False # Based on metadata, this appears to be ChIP-seq data, not gene expression
|
34 |
+
|
35 |
+
# Define variable rows and conversion functions
|
36 |
+
trait_row = None # No clinical trait info available
|
37 |
+
age_row = None # No age info available
|
38 |
+
gender_row = None # No gender info available
|
39 |
+
|
40 |
+
def convert_trait(x):
|
41 |
+
return None
|
42 |
+
|
43 |
+
def convert_age(x):
|
44 |
+
return None
|
45 |
+
|
46 |
+
def convert_gender(x):
|
47 |
+
return None
|
48 |
+
|
49 |
+
# Save metadata
|
50 |
+
validate_and_save_cohort_info(
|
51 |
+
is_final=False,
|
52 |
+
cohort=cohort,
|
53 |
+
info_path=json_path,
|
54 |
+
is_gene_available=is_gene_available,
|
55 |
+
is_trait_available=(trait_row is not None)
|
56 |
+
)
|
p3/preprocess/Kidney_Clear_Cell_Carcinoma/code/GSE106757.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Kidney_Clear_Cell_Carcinoma"
|
6 |
+
cohort = "GSE106757"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Kidney_Clear_Cell_Carcinoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Kidney_Clear_Cell_Carcinoma/GSE106757"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/GSE106757.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/gene_data/GSE106757.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/clinical_data/GSE106757.csv"
|
16 |
+
json_path = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
|
24 |
+
# Get unique values for each clinical feature
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background information
|
28 |
+
print("Background Information:")
|
29 |
+
print(background_info)
|
30 |
+
print("\nSample Characteristics:")
|
31 |
+
print(json.dumps(unique_values_dict, indent=2))
|
32 |
+
# Gene Expression Data Availability
|
33 |
+
is_gene_available = True # Yes, the study involves transcriptional analysis of monocytes
|
34 |
+
|
35 |
+
# Variable Availability and Data Type Conversion
|
36 |
+
trait_row = 0 # The trait (disease state) is in row 0
|
37 |
+
age_row = None # Age not available
|
38 |
+
gender_row = None # Gender not available
|
39 |
+
|
40 |
+
def convert_trait(value: str) -> Optional[int]:
|
41 |
+
"""Convert disease state to binary: 0 for healthy, 1 for renal cell carcinoma"""
|
42 |
+
if not value or ':' not in value:
|
43 |
+
return None
|
44 |
+
value = value.split(':')[1].strip().lower()
|
45 |
+
if 'healthy' in value:
|
46 |
+
return 0
|
47 |
+
elif 'renal cell carcinoma' in value or 'rcc' in value:
|
48 |
+
return 1
|
49 |
+
return None
|
50 |
+
|
51 |
+
convert_age = None # Age data not available
|
52 |
+
convert_gender = None # Gender data not available
|
53 |
+
|
54 |
+
# Initial validation and saving metadata
|
55 |
+
is_trait_available = trait_row is not None
|
56 |
+
validate_and_save_cohort_info(
|
57 |
+
is_final=False,
|
58 |
+
cohort=cohort,
|
59 |
+
info_path=json_path,
|
60 |
+
is_gene_available=is_gene_available,
|
61 |
+
is_trait_available=is_trait_available
|
62 |
+
)
|
63 |
+
|
64 |
+
# Clinical feature extraction since trait_row is not None
|
65 |
+
clinical_features = geo_select_clinical_features(
|
66 |
+
clinical_df=clinical_data,
|
67 |
+
trait=trait,
|
68 |
+
trait_row=trait_row,
|
69 |
+
convert_trait=convert_trait
|
70 |
+
)
|
71 |
+
|
72 |
+
# Preview and save clinical features
|
73 |
+
print("Clinical Features Preview:")
|
74 |
+
print(preview_df(clinical_features))
|
75 |
+
|
76 |
+
# Save clinical data
|
77 |
+
clinical_features.to_csv(out_clinical_data_file)
|
78 |
+
# Extract gene expression data from the matrix file
|
79 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
80 |
+
|
81 |
+
# Print first 20 row IDs
|
82 |
+
print("First 20 row IDs:")
|
83 |
+
print(genetic_data.index[:20].tolist())
|
84 |
+
# These appear to be standard HGNC gene symbols mixed with some older identifiers
|
85 |
+
# Most identifiers like A1BG, A2M, AAAS are valid HGNC symbols
|
86 |
+
# However, some like 7A5, AAA1 are likely older or alternative identifiers
|
87 |
+
# Therefore mapping to current HGNC symbols would be beneficial for standardization
|
88 |
+
requires_gene_mapping = True
|
89 |
+
# First inspect if there's a platform section in the SOFT file
|
90 |
+
with gzip.open(soft_file_path, 'rt') as f:
|
91 |
+
# Search for lines containing platform annotation
|
92 |
+
for line in f:
|
93 |
+
if line.startswith('^PLATFORM'):
|
94 |
+
print("Found platform section:")
|
95 |
+
# Print next 20 lines to understand the structure
|
96 |
+
print('\n'.join([next(f).strip() for _ in range(20)]))
|
97 |
+
break
|
98 |
+
|
99 |
+
# Then extract gene annotation using the library function
|
100 |
+
gene_metadata = get_gene_annotation(soft_file_path)
|
101 |
+
print("\nGene annotation data shape:", gene_metadata.shape)
|
102 |
+
print("\nColumns:", gene_metadata.columns.tolist())
|
103 |
+
print("\nPreview:")
|
104 |
+
print(json.dumps(preview_df(gene_metadata), indent=2))
|
105 |
+
# Since annotation mapping failed, directly normalize the gene symbols
|
106 |
+
gene_data = normalize_gene_symbols_in_index(genetic_data)
|
107 |
+
|
108 |
+
# Print preview of gene data
|
109 |
+
print("Gene data shape:", gene_data.shape)
|
110 |
+
print("\nFirst few gene symbols:")
|
111 |
+
print(gene_data.index[:10].tolist())
|
112 |
+
# 1. Normalize gene symbols
|
113 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
114 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
115 |
+
gene_data.to_csv(out_gene_data_file)
|
116 |
+
|
117 |
+
# 2. Link clinical and genetic data
|
118 |
+
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
|
119 |
+
|
120 |
+
# 3. Handle missing values
|
121 |
+
linked_data = handle_missing_values(linked_data, trait)
|
122 |
+
|
123 |
+
# Early exit if trait values are all NaN
|
124 |
+
if linked_data[trait].isna().all():
|
125 |
+
is_biased = True
|
126 |
+
linked_data = None
|
127 |
+
else:
|
128 |
+
# 4. Judge whether features are biased and remove biased demographic features
|
129 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
130 |
+
|
131 |
+
# 5. Final validation and save metadata
|
132 |
+
note = "This dataset contains gene expression data from blood monocyte subsets comparing renal cell carcinoma patients with healthy donors."
|
133 |
+
is_usable = validate_and_save_cohort_info(
|
134 |
+
is_final=True,
|
135 |
+
cohort=cohort,
|
136 |
+
info_path=json_path,
|
137 |
+
is_gene_available=True,
|
138 |
+
is_trait_available=True,
|
139 |
+
is_biased=is_biased,
|
140 |
+
df=linked_data,
|
141 |
+
note=note
|
142 |
+
)
|
143 |
+
|
144 |
+
# 6. Save the linked data only if it's usable
|
145 |
+
if is_usable:
|
146 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
147 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Kidney_Clear_Cell_Carcinoma/code/GSE117230.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Kidney_Clear_Cell_Carcinoma"
|
6 |
+
cohort = "GSE117230"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Kidney_Clear_Cell_Carcinoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Kidney_Clear_Cell_Carcinoma/GSE117230"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/GSE117230.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/gene_data/GSE117230.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/clinical_data/GSE117230.csv"
|
16 |
+
json_path = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
|
24 |
+
# Get unique values for each clinical feature
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background information
|
28 |
+
print("Background Information:")
|
29 |
+
print(background_info)
|
30 |
+
print("\nSample Characteristics:")
|
31 |
+
print(json.dumps(unique_values_dict, indent=2))
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# Yes, this dataset contains transcriptional profiling data per background info
|
34 |
+
is_gene_available = True
|
35 |
+
|
36 |
+
# 2. Variable Analysis
|
37 |
+
# 2.1 Data Availability
|
38 |
+
# Trait: disease state from row 0 distinguishes ccRCC patients vs healthy controls
|
39 |
+
trait_row = 0
|
40 |
+
# Age is not available in sample characteristics
|
41 |
+
age_row = None
|
42 |
+
# Gender is not available in sample characteristics
|
43 |
+
gender_row = None
|
44 |
+
|
45 |
+
# 2.2 Data Type Conversion Functions
|
46 |
+
def convert_trait(value: str) -> int:
|
47 |
+
"""Convert disease state to binary: 0 for healthy control, 1 for ccRCC"""
|
48 |
+
if not isinstance(value, str):
|
49 |
+
return None
|
50 |
+
value = value.split(': ')[-1].lower()
|
51 |
+
if 'ccrcc patient' in value:
|
52 |
+
return 1
|
53 |
+
elif 'healthy control' in value:
|
54 |
+
return 0
|
55 |
+
return None
|
56 |
+
|
57 |
+
def convert_age(value: str) -> float:
|
58 |
+
"""Convert age to float"""
|
59 |
+
return None # Not used since age not available
|
60 |
+
|
61 |
+
def convert_gender(value: str) -> int:
|
62 |
+
"""Convert gender to binary"""
|
63 |
+
return None # Not used since gender not available
|
64 |
+
|
65 |
+
# 3. Save Metadata
|
66 |
+
is_trait_available = trait_row is not None
|
67 |
+
validate_and_save_cohort_info(is_final=False,
|
68 |
+
cohort=cohort,
|
69 |
+
info_path=json_path,
|
70 |
+
is_gene_available=is_gene_available,
|
71 |
+
is_trait_available=is_trait_available)
|
72 |
+
|
73 |
+
# 4. Extract Clinical Features
|
74 |
+
# Since trait_row is not None, we need to extract clinical features
|
75 |
+
clinical_df = geo_select_clinical_features(clinical_data,
|
76 |
+
trait=trait,
|
77 |
+
trait_row=trait_row,
|
78 |
+
convert_trait=convert_trait,
|
79 |
+
age_row=age_row,
|
80 |
+
convert_age=convert_age,
|
81 |
+
gender_row=gender_row,
|
82 |
+
convert_gender=convert_gender)
|
83 |
+
|
84 |
+
# Preview the extracted features
|
85 |
+
print("Preview of clinical features:")
|
86 |
+
print(preview_df(clinical_df))
|
87 |
+
|
88 |
+
# Save clinical data
|
89 |
+
clinical_df.to_csv(out_clinical_data_file)
|
90 |
+
# Extract gene expression data from the matrix file
|
91 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
92 |
+
|
93 |
+
# Print first 20 row IDs
|
94 |
+
print("First 20 row IDs:")
|
95 |
+
print(genetic_data.index[:20].tolist())
|
96 |
+
# The identifiers appear to be probeset IDs (ending in '_st')
|
97 |
+
# rather than standard human gene symbols like 'BRCA1', 'TP53', etc.
|
98 |
+
# These will need to be mapped to official gene symbols
|
99 |
+
requires_gene_mapping = True
|
100 |
+
# Extract gene annotation data from SOFT file
|
101 |
+
gene_metadata = get_gene_annotation(soft_file_path)
|
102 |
+
|
103 |
+
# Display information about the annotation data
|
104 |
+
print("Column names:")
|
105 |
+
print(gene_metadata.columns.tolist())
|
106 |
+
|
107 |
+
# Look at general data statistics
|
108 |
+
print("\nData shape:", gene_metadata.shape)
|
109 |
+
|
110 |
+
# Preview the first few rows
|
111 |
+
print("\nPreview of the annotation data:")
|
112 |
+
print(json.dumps(preview_df(gene_metadata), indent=2))
|
113 |
+
# Find probe IDs and gene symbols in annotation data
|
114 |
+
# The gene expression data uses probeset_id format, which matches the 'ID' column in annotations
|
115 |
+
# Gene symbols are in gene_assignment column with format "RefSeq // Gene Symbol // Description"
|
116 |
+
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='gene_assignment')
|
117 |
+
|
118 |
+
# Convert the gene assignment strings to gene symbols
|
119 |
+
def extract_gene(assignment):
|
120 |
+
if pd.isna(assignment):
|
121 |
+
return []
|
122 |
+
# Split by gene name separator '//' and look for entries that appear to be gene symbols
|
123 |
+
genes = []
|
124 |
+
parts = assignment.split('//')
|
125 |
+
for part in parts:
|
126 |
+
genes.extend(extract_human_gene_symbols(part))
|
127 |
+
return genes
|
128 |
+
|
129 |
+
# Get the gene mapping and apply it to convert probe expression to gene expression
|
130 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_data)
|
131 |
+
|
132 |
+
# Print preview of the gene data
|
133 |
+
print("Preview of mapped gene expression data:")
|
134 |
+
print(preview_df(gene_data))
|
135 |
+
# 1. Normalize gene symbols
|
136 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
137 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
138 |
+
gene_data.to_csv(out_gene_data_file)
|
139 |
+
|
140 |
+
# 2. Link clinical and genetic data
|
141 |
+
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
|
142 |
+
|
143 |
+
# 3. Handle missing values
|
144 |
+
linked_data = handle_missing_values(linked_data, trait)
|
145 |
+
|
146 |
+
# Early exit if trait values are all NaN
|
147 |
+
if linked_data[trait].isna().all():
|
148 |
+
is_biased = True
|
149 |
+
linked_data = None
|
150 |
+
else:
|
151 |
+
# 4. Judge whether features are biased and remove biased demographic features
|
152 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
153 |
+
|
154 |
+
# 5. Final validation and save metadata
|
155 |
+
note = "Dataset from gene expression microarray profiling of proximal tubule cells from African American individuals, comparing samples with different APOL1 genotypes."
|
156 |
+
is_usable = validate_and_save_cohort_info(
|
157 |
+
is_final=True,
|
158 |
+
cohort=cohort,
|
159 |
+
info_path=json_path,
|
160 |
+
is_gene_available=True,
|
161 |
+
is_trait_available=True,
|
162 |
+
is_biased=is_biased,
|
163 |
+
df=linked_data,
|
164 |
+
note=note
|
165 |
+
)
|
166 |
+
|
167 |
+
# 6. Save the linked data only if it's usable
|
168 |
+
if is_usable:
|
169 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
170 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Kidney_Clear_Cell_Carcinoma/code/GSE119958.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Kidney_Clear_Cell_Carcinoma"
|
6 |
+
cohort = "GSE119958"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Kidney_Clear_Cell_Carcinoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Kidney_Clear_Cell_Carcinoma/GSE119958"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/GSE119958.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/gene_data/GSE119958.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/clinical_data/GSE119958.csv"
|
16 |
+
json_path = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
|
24 |
+
# Get unique values for each clinical feature
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background information
|
28 |
+
print("Background Information:")
|
29 |
+
print(background_info)
|
30 |
+
print("\nSample Characteristics:")
|
31 |
+
print(json.dumps(unique_values_dict, indent=2))
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
is_gene_available = True # Affymetrix HTA 2.0 arrays for mRNA expression
|
34 |
+
|
35 |
+
# 2. Variable Availability and Row IDs
|
36 |
+
trait_row = 1 # APOL1 genotype information in row 1
|
37 |
+
|
38 |
+
# Age and gender info not available in sample characteristics
|
39 |
+
age_row = None
|
40 |
+
gender_row = None
|
41 |
+
|
42 |
+
# 2.2 Conversion Functions
|
43 |
+
def convert_trait(value):
|
44 |
+
"""
|
45 |
+
Convert APOL1 genotype to binary:
|
46 |
+
0: Low risk (G0G0)
|
47 |
+
1: High risk (G1G0, G2G0, G1G1, G1G2)
|
48 |
+
"""
|
49 |
+
if not value or ':' not in value:
|
50 |
+
return None
|
51 |
+
genotype = value.split(': ')[1].strip()
|
52 |
+
if 'G0G0' in genotype:
|
53 |
+
return 0
|
54 |
+
elif any(g in genotype for g in ['G1G0', 'G2G0', 'G1G1', 'G1G2']):
|
55 |
+
return 1
|
56 |
+
return None
|
57 |
+
|
58 |
+
def convert_age(value):
|
59 |
+
return None # Not available
|
60 |
+
|
61 |
+
def convert_gender(value):
|
62 |
+
return None # Not available
|
63 |
+
|
64 |
+
# 3. Save metadata for initial filtering
|
65 |
+
validate_and_save_cohort_info(
|
66 |
+
is_final=False,
|
67 |
+
cohort=cohort,
|
68 |
+
info_path=json_path,
|
69 |
+
is_gene_available=is_gene_available,
|
70 |
+
is_trait_available=trait_row is not None
|
71 |
+
)
|
72 |
+
|
73 |
+
# 4. Extract clinical features
|
74 |
+
if trait_row is not None:
|
75 |
+
clinical_features = geo_select_clinical_features(
|
76 |
+
clinical_df=clinical_data,
|
77 |
+
trait=trait,
|
78 |
+
trait_row=trait_row,
|
79 |
+
convert_trait=convert_trait,
|
80 |
+
age_row=age_row,
|
81 |
+
convert_age=convert_age,
|
82 |
+
gender_row=gender_row,
|
83 |
+
convert_gender=convert_gender
|
84 |
+
)
|
85 |
+
|
86 |
+
# Preview the extracted features
|
87 |
+
preview = preview_df(clinical_features)
|
88 |
+
print("Preview of clinical features:", preview)
|
89 |
+
|
90 |
+
# Save to CSV
|
91 |
+
clinical_features.to_csv(out_clinical_data_file)
|
92 |
+
# Extract gene expression data from the matrix file
|
93 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
94 |
+
|
95 |
+
# Print first 20 row IDs
|
96 |
+
print("First 20 row IDs:")
|
97 |
+
print(genetic_data.index[:20].tolist())
|
98 |
+
# Looking at gene identifiers like 'TC01000001.hg.1', these are probe IDs from Affymetrix array
|
99 |
+
# and not standard human gene symbols. They need to be mapped.
|
100 |
+
requires_gene_mapping = True
|
101 |
+
# Extract gene annotation data from SOFT file
|
102 |
+
gene_metadata = get_gene_annotation(soft_file_path)
|
103 |
+
|
104 |
+
# Display information about the annotation data
|
105 |
+
print("Column names:")
|
106 |
+
print(gene_metadata.columns.tolist())
|
107 |
+
|
108 |
+
# Look at general data statistics
|
109 |
+
print("\nData shape:", gene_metadata.shape)
|
110 |
+
|
111 |
+
# Preview the first few rows
|
112 |
+
print("\nPreview of the annotation data:")
|
113 |
+
print(json.dumps(preview_df(gene_metadata), indent=2))
|
114 |
+
# Identify ID and gene columns for mapping
|
115 |
+
# ID column contains same identifiers (e.g. TC01000001.hg.1) as gene expression data
|
116 |
+
# gene_assignment column contains gene symbols and details
|
117 |
+
|
118 |
+
# Process mapping between probe IDs and gene symbols
|
119 |
+
mapping_df = get_gene_mapping(gene_metadata, 'ID', 'gene_assignment')
|
120 |
+
|
121 |
+
# Apply mapping to convert probe measurements to gene expression
|
122 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_df)
|
123 |
+
|
124 |
+
# Save genetic data
|
125 |
+
gene_data.to_csv(out_gene_data_file)
|
126 |
+
# 1. Normalize gene symbols
|
127 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
128 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
129 |
+
gene_data.to_csv(out_gene_data_file)
|
130 |
+
|
131 |
+
# 2. Link clinical and genetic data
|
132 |
+
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
|
133 |
+
|
134 |
+
# 3. Handle missing values
|
135 |
+
linked_data = handle_missing_values(linked_data, trait)
|
136 |
+
|
137 |
+
# Early exit if trait values are all NaN
|
138 |
+
if linked_data[trait].isna().all():
|
139 |
+
is_biased = True
|
140 |
+
linked_data = None
|
141 |
+
else:
|
142 |
+
# 4. Judge whether features are biased and remove biased demographic features
|
143 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
144 |
+
|
145 |
+
# 5. Final validation and save metadata
|
146 |
+
note = "Dataset from gene expression microarray profiling of proximal tubule cells from African American individuals, comparing samples with different APOL1 genotypes."
|
147 |
+
is_usable = validate_and_save_cohort_info(
|
148 |
+
is_final=True,
|
149 |
+
cohort=cohort,
|
150 |
+
info_path=json_path,
|
151 |
+
is_gene_available=True,
|
152 |
+
is_trait_available=True,
|
153 |
+
is_biased=is_biased,
|
154 |
+
df=linked_data,
|
155 |
+
note=note
|
156 |
+
)
|
157 |
+
|
158 |
+
# 6. Save the linked data only if it's usable
|
159 |
+
if is_usable:
|
160 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
161 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Kidney_Clear_Cell_Carcinoma/code/GSE127136.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Kidney_Clear_Cell_Carcinoma"
|
6 |
+
cohort = "GSE127136"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Kidney_Clear_Cell_Carcinoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Kidney_Clear_Cell_Carcinoma/GSE127136"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/GSE127136.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/gene_data/GSE127136.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/clinical_data/GSE127136.csv"
|
16 |
+
json_path = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
|
24 |
+
# Get unique values for each clinical feature
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background information
|
28 |
+
print("Background Information:")
|
29 |
+
print(background_info)
|
30 |
+
print("\nSample Characteristics:")
|
31 |
+
print(json.dumps(unique_values_dict, indent=2))
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# This is single-cell RNA-seq data, not miRNA or methylation data
|
34 |
+
is_gene_available = True
|
35 |
+
|
36 |
+
# 2. Variable Availability and Data Type Conversion
|
37 |
+
# 2.1 Data Availability
|
38 |
+
# For trait (cancer vs normal), we can use disease state field (row 1)
|
39 |
+
trait_row = 1
|
40 |
+
|
41 |
+
# Age and gender not available in sample characteristics
|
42 |
+
age_row = None
|
43 |
+
gender_row = None
|
44 |
+
|
45 |
+
# 2.2 Data Type Conversion Functions
|
46 |
+
def convert_trait(x):
|
47 |
+
if ':' in str(x):
|
48 |
+
value = str(x).split(':')[1].strip().lower()
|
49 |
+
if 'kidney cancer' in value:
|
50 |
+
return 1 # cancer samples
|
51 |
+
elif 'normal' in value:
|
52 |
+
return 0 # normal samples (paracancerous tissues)
|
53 |
+
return None
|
54 |
+
|
55 |
+
def convert_age(x):
|
56 |
+
return None
|
57 |
+
|
58 |
+
def convert_gender(x):
|
59 |
+
return None
|
60 |
+
|
61 |
+
# 3. Save Metadata
|
62 |
+
# Validate and save cohort info (initial filtering)
|
63 |
+
validate_and_save_cohort_info(
|
64 |
+
is_final=False,
|
65 |
+
cohort=cohort,
|
66 |
+
info_path=json_path,
|
67 |
+
is_gene_available=is_gene_available,
|
68 |
+
is_trait_available=(trait_row is not None)
|
69 |
+
)
|
70 |
+
|
71 |
+
# 4. Clinical Feature Extraction
|
72 |
+
if trait_row is not None:
|
73 |
+
selected_clinical = geo_select_clinical_features(
|
74 |
+
clinical_df=clinical_data,
|
75 |
+
trait=trait,
|
76 |
+
trait_row=trait_row,
|
77 |
+
convert_trait=convert_trait,
|
78 |
+
age_row=age_row,
|
79 |
+
convert_age=convert_age,
|
80 |
+
gender_row=gender_row,
|
81 |
+
convert_gender=convert_gender
|
82 |
+
)
|
83 |
+
|
84 |
+
# Preview the processed clinical data
|
85 |
+
print("Preview of processed clinical data:")
|
86 |
+
print(preview_df(selected_clinical))
|
87 |
+
|
88 |
+
# Save clinical data
|
89 |
+
selected_clinical.to_csv(out_clinical_data_file)
|
90 |
+
# Since we've discovered the gene expression data is in a different database,
|
91 |
+
# we need to abort the gene data extraction attempt
|
92 |
+
print("Gene expression data for this series is stored in the Genome Sequence Archive for Human database")
|
93 |
+
print("(https://bigd.big.ac.cn/gsa-human/) under accession PRJCA003506")
|
94 |
+
print("The data is not available in GEO matrix format required by our pipeline")
|
95 |
+
|
96 |
+
# Set genetic data to empty dataframe to indicate extraction failed
|
97 |
+
genetic_data = pd.DataFrame()
|
p3/preprocess/Kidney_Clear_Cell_Carcinoma/code/GSE131027.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Kidney_Clear_Cell_Carcinoma"
|
6 |
+
cohort = "GSE131027"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Kidney_Clear_Cell_Carcinoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Kidney_Clear_Cell_Carcinoma/GSE131027"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/GSE131027.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/gene_data/GSE131027.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/clinical_data/GSE131027.csv"
|
16 |
+
json_path = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
|
24 |
+
# Get unique values for each clinical feature
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background information
|
28 |
+
print("Background Information:")
|
29 |
+
print(background_info)
|
30 |
+
print("\nSample Characteristics:")
|
31 |
+
print(json.dumps(unique_values_dict, indent=2))
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# Since we have gene mutation data but no explicit gene expression matrix shown,
|
34 |
+
# this dataset likely contains pure mutation data rather than expression data
|
35 |
+
is_gene_available = False
|
36 |
+
|
37 |
+
# 2. Variable Availability and Data Type Conversion
|
38 |
+
# 2.1 Cancer type is recorded in row 1, we can use it to identify kidney cancer cases
|
39 |
+
trait_row = 1
|
40 |
+
|
41 |
+
# Age and gender are not recorded in the sample characteristics
|
42 |
+
age_row = None
|
43 |
+
gender_row = None
|
44 |
+
|
45 |
+
# 2.2 Data Type Conversion Functions
|
46 |
+
def convert_trait(x):
|
47 |
+
# Extract value after colon
|
48 |
+
if ':' in str(x):
|
49 |
+
value = str(x).split(':')[1].strip().lower()
|
50 |
+
# Check if it's kidney cancer
|
51 |
+
if 'renal cell carcinoma' in value:
|
52 |
+
return 1
|
53 |
+
else:
|
54 |
+
return 0
|
55 |
+
return None
|
56 |
+
|
57 |
+
def convert_age(x):
|
58 |
+
return None
|
59 |
+
|
60 |
+
def convert_gender(x):
|
61 |
+
return None
|
62 |
+
|
63 |
+
# 3. Initial Filtering and Save Metadata
|
64 |
+
is_trait_available = trait_row is not None
|
65 |
+
validate_and_save_cohort_info(is_final=False,
|
66 |
+
cohort=cohort,
|
67 |
+
info_path=json_path,
|
68 |
+
is_gene_available=is_gene_available,
|
69 |
+
is_trait_available=is_trait_available)
|
70 |
+
|
71 |
+
# 4. Clinical Feature Extraction
|
72 |
+
if trait_row is not None:
|
73 |
+
# Extract clinical features
|
74 |
+
clinical_df = geo_select_clinical_features(clinical_data,
|
75 |
+
trait=trait,
|
76 |
+
trait_row=trait_row,
|
77 |
+
convert_trait=convert_trait,
|
78 |
+
age_row=age_row,
|
79 |
+
convert_age=convert_age,
|
80 |
+
gender_row=gender_row,
|
81 |
+
convert_gender=convert_gender)
|
82 |
+
|
83 |
+
# Preview the processed data
|
84 |
+
preview = preview_df(clinical_df)
|
85 |
+
print("Preview of clinical data:")
|
86 |
+
print(preview)
|
87 |
+
|
88 |
+
# Save to CSV
|
89 |
+
clinical_df.to_csv(out_clinical_data_file)
|
90 |
+
# Extract gene expression data from the matrix file
|
91 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
92 |
+
|
93 |
+
# Print first 20 row IDs
|
94 |
+
print("First 20 row IDs:")
|
95 |
+
print(genetic_data.index[:20].tolist())
|
96 |
+
# These are probe IDs from the Affymetrix human microarray platform
|
97 |
+
# They need to be mapped to human gene symbols for analysis
|
98 |
+
requires_gene_mapping = True
|
99 |
+
# Extract gene annotation data from SOFT file
|
100 |
+
gene_metadata = get_gene_annotation(soft_file_path)
|
101 |
+
|
102 |
+
# Display information about the annotation data
|
103 |
+
print("Column names:")
|
104 |
+
print(gene_metadata.columns.tolist())
|
105 |
+
|
106 |
+
# Look at general data statistics
|
107 |
+
print("\nData shape:", gene_metadata.shape)
|
108 |
+
|
109 |
+
# Preview the first few rows
|
110 |
+
print("\nPreview of the annotation data:")
|
111 |
+
print(json.dumps(preview_df(gene_metadata), indent=2))
|
112 |
+
# 1. Looking at gene annotations, 'ID' matches probe IDs in expression data, and 'Gene Symbol' has corresponding gene symbols
|
113 |
+
prob_col = 'ID'
|
114 |
+
gene_col = 'Gene Symbol'
|
115 |
+
|
116 |
+
# 2. Get mapping between probe IDs and gene symbols
|
117 |
+
mapping_df = get_gene_mapping(gene_metadata, prob_col, gene_col)
|
118 |
+
|
119 |
+
# 3. Apply gene mapping to convert probe expression to gene expression
|
120 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_df)
|
121 |
+
# 1. Normalize gene symbols
|
122 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
123 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
124 |
+
gene_data.to_csv(out_gene_data_file)
|
125 |
+
|
126 |
+
# 2. Link clinical and genetic data
|
127 |
+
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
|
128 |
+
|
129 |
+
# 3. Handle missing values
|
130 |
+
linked_data = handle_missing_values(linked_data, trait)
|
131 |
+
|
132 |
+
# Early exit if trait values are all NaN
|
133 |
+
if linked_data[trait].isna().all():
|
134 |
+
is_biased = True
|
135 |
+
linked_data = None
|
136 |
+
else:
|
137 |
+
# 4. Judge whether features are biased and remove biased demographic features
|
138 |
+
is_biased = judge_binary_variable_biased(linked_data, trait)
|
139 |
+
if "Age" in linked_data.columns:
|
140 |
+
if judge_continuous_variable_biased(linked_data, "Age"):
|
141 |
+
linked_data = linked_data.drop(columns="Age")
|
142 |
+
if "Gender" in linked_data.columns:
|
143 |
+
if judge_binary_variable_biased(linked_data, "Gender"):
|
144 |
+
linked_data = linked_data.drop(columns="Gender")
|
145 |
+
|
146 |
+
# 5. Final validation and save metadata
|
147 |
+
note = "Dataset from a cancer gene expression study using oligonucleotide microarrays, containing samples of kidney chromophobe tumors and normal tissues."
|
148 |
+
is_usable = validate_and_save_cohort_info(
|
149 |
+
is_final=True,
|
150 |
+
cohort=cohort,
|
151 |
+
info_path=json_path,
|
152 |
+
is_gene_available=True,
|
153 |
+
is_trait_available=True,
|
154 |
+
is_biased=is_biased,
|
155 |
+
df=linked_data,
|
156 |
+
note=note
|
157 |
+
)
|
158 |
+
|
159 |
+
# 6. Save the linked data only if it's usable
|
160 |
+
if is_usable:
|
161 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
162 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Kidney_Clear_Cell_Carcinoma/code/GSE150404.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Kidney_Clear_Cell_Carcinoma"
|
6 |
+
cohort = "GSE150404"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Kidney_Clear_Cell_Carcinoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Kidney_Clear_Cell_Carcinoma/GSE150404"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/GSE150404.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/gene_data/GSE150404.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/clinical_data/GSE150404.csv"
|
16 |
+
json_path = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
|
24 |
+
# Get unique values for each clinical feature
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background information
|
28 |
+
print("Background Information:")
|
29 |
+
print(background_info)
|
30 |
+
print("\nSample Characteristics:")
|
31 |
+
print(json.dumps(unique_values_dict, indent=2))
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# Based on background info mentioning "Expression data" and "microarrays", this dataset contains gene expression data
|
34 |
+
is_gene_available = True
|
35 |
+
|
36 |
+
# 2.1 Data Availability
|
37 |
+
# trait (cancer stage) is in row 1
|
38 |
+
# gender is in row 2
|
39 |
+
# age is in row 3
|
40 |
+
trait_row = 1
|
41 |
+
gender_row = 2
|
42 |
+
age_row = 3
|
43 |
+
|
44 |
+
# 2.2 Data Type Conversion Functions
|
45 |
+
def convert_trait(x: str) -> int:
|
46 |
+
"""Convert cancer stage to binary: early (0) vs late (1) stage"""
|
47 |
+
if not isinstance(x, str):
|
48 |
+
return None
|
49 |
+
x = x.split(': ')[-1].lower()
|
50 |
+
if x in ['first', 'second']:
|
51 |
+
return 0 # Early stage
|
52 |
+
elif x in ['third', 'fourth']:
|
53 |
+
return 1 # Late stage
|
54 |
+
return None
|
55 |
+
|
56 |
+
def convert_age(x: str) -> float:
|
57 |
+
"""Convert age string to float"""
|
58 |
+
if not isinstance(x, str):
|
59 |
+
return None
|
60 |
+
x = x.split(': ')[-1]
|
61 |
+
try:
|
62 |
+
return float(x)
|
63 |
+
except:
|
64 |
+
return None
|
65 |
+
|
66 |
+
def convert_gender(x: str) -> int:
|
67 |
+
"""Convert gender to binary: female (0) vs male (1)"""
|
68 |
+
if not isinstance(x, str):
|
69 |
+
return None
|
70 |
+
x = x.split(': ')[-1].lower()
|
71 |
+
if x == 'female':
|
72 |
+
return 0
|
73 |
+
elif x == 'male':
|
74 |
+
return 1
|
75 |
+
return None
|
76 |
+
|
77 |
+
# 3. Save metadata through initial filtering
|
78 |
+
validate_and_save_cohort_info(
|
79 |
+
is_final=False,
|
80 |
+
cohort=cohort,
|
81 |
+
info_path=json_path,
|
82 |
+
is_gene_available=is_gene_available,
|
83 |
+
is_trait_available=(trait_row is not None)
|
84 |
+
)
|
85 |
+
|
86 |
+
# 4. Extract clinical features
|
87 |
+
selected_clinical = geo_select_clinical_features(
|
88 |
+
clinical_df=clinical_data,
|
89 |
+
trait=trait,
|
90 |
+
trait_row=trait_row,
|
91 |
+
convert_trait=convert_trait,
|
92 |
+
age_row=age_row,
|
93 |
+
convert_age=convert_age,
|
94 |
+
gender_row=gender_row,
|
95 |
+
convert_gender=convert_gender
|
96 |
+
)
|
97 |
+
|
98 |
+
# Preview and save clinical data
|
99 |
+
print("Preview of extracted clinical features:")
|
100 |
+
print(preview_df(selected_clinical))
|
101 |
+
selected_clinical.to_csv(out_clinical_data_file)
|
102 |
+
# Extract gene expression data from the matrix file
|
103 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
104 |
+
|
105 |
+
# Print first 20 row IDs
|
106 |
+
print("First 20 row IDs:")
|
107 |
+
print(genetic_data.index[:20].tolist())
|
108 |
+
# The gene identifiers are numeric codes (16650001, etc) rather than standard human gene symbols
|
109 |
+
# These appear to be probe IDs that need to be mapped to gene symbols
|
110 |
+
|
111 |
+
requires_gene_mapping = True
|
112 |
+
# Extract gene annotation data from SOFT file
|
113 |
+
gene_metadata = get_gene_annotation(soft_file_path)
|
114 |
+
|
115 |
+
# Display information about the annotation data
|
116 |
+
print("Column names:")
|
117 |
+
print(gene_metadata.columns.tolist())
|
118 |
+
|
119 |
+
# Look at general data statistics
|
120 |
+
print("\nData shape:", gene_metadata.shape)
|
121 |
+
|
122 |
+
# Preview the first few rows
|
123 |
+
print("\nPreview of the annotation data:")
|
124 |
+
print(json.dumps(preview_df(gene_metadata), indent=2))
|
125 |
+
# 'ID' column in gene_metadata matches the gene identifiers in genetic_data
|
126 |
+
# 'gene_assignment' column contains gene symbols
|
127 |
+
|
128 |
+
# Get mapping between probe IDs and gene symbols
|
129 |
+
mapping_data = get_gene_mapping(gene_metadata, 'ID', 'gene_assignment')
|
130 |
+
|
131 |
+
# Apply the mapping to convert probe-level data to gene-level data
|
132 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_data)
|
133 |
+
# 1. Normalize gene symbols
|
134 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
135 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
136 |
+
gene_data.to_csv(out_gene_data_file)
|
137 |
+
|
138 |
+
# 2. Link clinical and genetic data
|
139 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)
|
140 |
+
|
141 |
+
# 3. Handle missing values
|
142 |
+
linked_data = handle_missing_values(linked_data, trait)
|
143 |
+
|
144 |
+
# Early exit if trait values are all NaN
|
145 |
+
if linked_data[trait].isna().all():
|
146 |
+
is_biased = True
|
147 |
+
linked_data = None
|
148 |
+
else:
|
149 |
+
# 4. Judge whether features are biased and remove biased demographic features
|
150 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
151 |
+
|
152 |
+
# 5. Final validation and save metadata
|
153 |
+
note = "Dataset from a cancer gene expression study using oligonucleotide microarrays, containing samples of kidney chromophobe tumors and normal tissues."
|
154 |
+
is_usable = validate_and_save_cohort_info(
|
155 |
+
is_final=True,
|
156 |
+
cohort=cohort,
|
157 |
+
info_path=json_path,
|
158 |
+
is_gene_available=True,
|
159 |
+
is_trait_available=True,
|
160 |
+
is_biased=is_biased,
|
161 |
+
df=linked_data,
|
162 |
+
note=note
|
163 |
+
)
|
164 |
+
|
165 |
+
# 6. Save the linked data only if it's usable
|
166 |
+
if is_usable:
|
167 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
168 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Kidney_Clear_Cell_Carcinoma/code/GSE245862.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Kidney_Clear_Cell_Carcinoma"
|
6 |
+
cohort = "GSE245862"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Kidney_Clear_Cell_Carcinoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Kidney_Clear_Cell_Carcinoma/GSE245862"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/GSE245862.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/gene_data/GSE245862.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/clinical_data/GSE245862.csv"
|
16 |
+
json_path = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
|
24 |
+
# Get unique values for each clinical feature
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background information
|
28 |
+
print("Background Information:")
|
29 |
+
print(background_info)
|
30 |
+
print("\nSample Characteristics:")
|
31 |
+
print(json.dumps(unique_values_dict, indent=2))
|
32 |
+
# 1. Gene expression data availability
|
33 |
+
# Yes, this is a microarray study of gene expression data
|
34 |
+
is_gene_available = True
|
35 |
+
|
36 |
+
# 2.1 Data availability
|
37 |
+
# Looking at sample characteristics - key 0 contains phenotype data that can be used for trait classification
|
38 |
+
trait_row = 0
|
39 |
+
|
40 |
+
# Age and gender information not available in sample characteristics
|
41 |
+
age_row = None
|
42 |
+
gender_row = None
|
43 |
+
|
44 |
+
# 2.2 Data type conversion functions
|
45 |
+
def convert_trait(value):
|
46 |
+
"""Convert phenotype to binary - normal (0) vs modified STAT3 (1)"""
|
47 |
+
if not isinstance(value, str):
|
48 |
+
return None
|
49 |
+
if ':' in value:
|
50 |
+
value = value.split(':', 1)[1].strip()
|
51 |
+
if "Normal" in value:
|
52 |
+
return 0
|
53 |
+
elif value: # Any modified STAT3 phenotype
|
54 |
+
return 1
|
55 |
+
return None
|
56 |
+
|
57 |
+
convert_age = None
|
58 |
+
convert_gender = None
|
59 |
+
|
60 |
+
# 3. Save metadata
|
61 |
+
validate_and_save_cohort_info(
|
62 |
+
is_final=False,
|
63 |
+
cohort=cohort,
|
64 |
+
info_path=json_path,
|
65 |
+
is_gene_available=is_gene_available,
|
66 |
+
is_trait_available=trait_row is not None
|
67 |
+
)
|
68 |
+
|
69 |
+
# 4. Extract clinical features since trait data is available
|
70 |
+
clinical_df = geo_select_clinical_features(
|
71 |
+
clinical_df=clinical_data,
|
72 |
+
trait=trait,
|
73 |
+
trait_row=trait_row,
|
74 |
+
convert_trait=convert_trait,
|
75 |
+
age_row=age_row,
|
76 |
+
convert_age=convert_age,
|
77 |
+
gender_row=gender_row,
|
78 |
+
convert_gender=convert_gender
|
79 |
+
)
|
80 |
+
|
81 |
+
# Preview extracted features
|
82 |
+
print(preview_df(clinical_df))
|
83 |
+
|
84 |
+
# Save clinical data
|
85 |
+
clinical_df.to_csv(out_clinical_data_file)
|
86 |
+
# Extract gene expression data from the matrix file
|
87 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
88 |
+
|
89 |
+
# Print first 20 row IDs
|
90 |
+
print("First 20 row IDs:")
|
91 |
+
print(genetic_data.index[:20].tolist())
|
92 |
+
# The IDs appear to be probe IDs or accession numbers, not gene symbols
|
93 |
+
# They are numerical identifiers, whereas gene symbols are typically alphanumeric like 'BRCA1', 'TP53' etc.
|
94 |
+
# Therefore mapping to gene symbols will be required
|
95 |
+
requires_gene_mapping = True
|
96 |
+
# Extract gene annotation data from SOFT file
|
97 |
+
gene_metadata = get_gene_annotation(soft_file_path)
|
98 |
+
|
99 |
+
# Display information about the annotation data
|
100 |
+
print("Column names:")
|
101 |
+
print(gene_metadata.columns.tolist())
|
102 |
+
|
103 |
+
# Look at general data statistics
|
104 |
+
print("\nData shape:", gene_metadata.shape)
|
105 |
+
|
106 |
+
# Preview the first few rows
|
107 |
+
print("\nPreview of the annotation data:")
|
108 |
+
print(json.dumps(preview_df(gene_metadata), indent=2))
|
109 |
+
# Extract gene symbols from annotations and create mapping
|
110 |
+
def extract_hgnc_symbols(text):
|
111 |
+
"""Extract HGNC gene symbols from annotation text"""
|
112 |
+
if not isinstance(text, str):
|
113 |
+
return []
|
114 |
+
pattern = r"HGNC Symbol;Acc:HGNC:\d+\] // ([A-Z][A-Z0-9-]+)"
|
115 |
+
matches = re.findall(pattern, text)
|
116 |
+
return list(set(matches))
|
117 |
+
|
118 |
+
mapping_df = gene_metadata[['ID', 'SPOT_ID.1']].copy()
|
119 |
+
mapping_df['Gene'] = mapping_df['SPOT_ID.1'].apply(extract_hgnc_symbols)
|
120 |
+
mapping_df = mapping_df[['ID', 'Gene']]
|
121 |
+
|
122 |
+
# Convert probe measurements to gene expression data
|
123 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_df)
|
124 |
+
|
125 |
+
# Normalize gene symbols to their latest official symbols
|
126 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
127 |
+
|
128 |
+
# Preview processed gene data
|
129 |
+
print("Preview of gene data after mapping:")
|
130 |
+
print(preview_df(gene_data))
|
131 |
+
|
132 |
+
# Save gene expression data
|
133 |
+
gene_data.to_csv(out_gene_data_file)
|
134 |
+
# Select clinical features
|
135 |
+
clinical_features = geo_select_clinical_features(
|
136 |
+
clinical_data, # Use clinical_data from previous steps
|
137 |
+
trait=trait,
|
138 |
+
trait_row=trait_row,
|
139 |
+
convert_trait=convert_trait,
|
140 |
+
age_row=age_row,
|
141 |
+
convert_age=convert_age,
|
142 |
+
gender_row=gender_row,
|
143 |
+
convert_gender=convert_gender
|
144 |
+
)
|
145 |
+
|
146 |
+
# 1. Gene data already normalized in previous step
|
147 |
+
|
148 |
+
# 2. Link clinical and genetic data
|
149 |
+
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
|
150 |
+
|
151 |
+
# 3. Handle missing values
|
152 |
+
linked_data = handle_missing_values(linked_data, trait)
|
153 |
+
|
154 |
+
# 4. Judge whether features are biased and remove biased demographic features
|
155 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
156 |
+
|
157 |
+
# 5. Final validation and save metadata
|
158 |
+
note = "Dataset from a cancer gene expression study using oligonucleotide microarrays, containing samples of kidney chromophobe tumors and normal tissues."
|
159 |
+
is_usable = validate_and_save_cohort_info(
|
160 |
+
is_final=True,
|
161 |
+
cohort=cohort,
|
162 |
+
info_path=json_path,
|
163 |
+
is_gene_available=True,
|
164 |
+
is_trait_available=True,
|
165 |
+
is_biased=is_biased,
|
166 |
+
df=linked_data,
|
167 |
+
note=note
|
168 |
+
)
|
169 |
+
|
170 |
+
# 6. Save the linked data only if it's usable
|
171 |
+
if is_usable:
|
172 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
173 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Kidney_Clear_Cell_Carcinoma/code/GSE94321.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Kidney_Clear_Cell_Carcinoma"
|
6 |
+
cohort = "GSE94321"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Kidney_Clear_Cell_Carcinoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Kidney_Clear_Cell_Carcinoma/GSE94321"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/GSE94321.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/gene_data/GSE94321.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/clinical_data/GSE94321.csv"
|
16 |
+
json_path = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
|
24 |
+
# Get unique values for each clinical feature
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background information
|
28 |
+
print("Background Information:")
|
29 |
+
print(background_info)
|
30 |
+
print("\nSample Characteristics:")
|
31 |
+
print(json.dumps(unique_values_dict, indent=2))
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# Based on background info "[human mRNA]", this dataset contains gene expression data
|
34 |
+
is_gene_available = True
|
35 |
+
|
36 |
+
# 2. Variable Availability and Data Type Conversion
|
37 |
+
# 2.1 Data Availability
|
38 |
+
# From sample characteristics, row 0 contains tissue info which can indicate trait
|
39 |
+
trait_row = 0
|
40 |
+
age_row = None # Age data not available
|
41 |
+
gender_row = None # Gender data not available
|
42 |
+
|
43 |
+
# 2.2 Data Type Conversion Functions
|
44 |
+
def convert_trait(value: str) -> int:
|
45 |
+
"""Convert trait values to binary (0: control, 1: case)"""
|
46 |
+
if not isinstance(value, str):
|
47 |
+
return None
|
48 |
+
value = value.lower().split(': ')[-1]
|
49 |
+
# RMC (Renal Medullary Carcinoma) is a type of kidney cancer
|
50 |
+
if value == 'rmc':
|
51 |
+
return 1
|
52 |
+
# Other tissue types are not kidney cancer
|
53 |
+
elif value in ['rt', 'es', 'uc']:
|
54 |
+
return 0
|
55 |
+
return None
|
56 |
+
|
57 |
+
def convert_age(value: str) -> Optional[float]:
|
58 |
+
return None
|
59 |
+
|
60 |
+
def convert_gender(value: str) -> Optional[int]:
|
61 |
+
return None
|
62 |
+
|
63 |
+
# 3. Save Metadata
|
64 |
+
is_usable = validate_and_save_cohort_info(
|
65 |
+
is_final=False,
|
66 |
+
cohort=cohort,
|
67 |
+
info_path=json_path,
|
68 |
+
is_gene_available=is_gene_available,
|
69 |
+
is_trait_available=(trait_row is not None)
|
70 |
+
)
|
71 |
+
|
72 |
+
# 4. Clinical Feature Extraction
|
73 |
+
if trait_row is not None:
|
74 |
+
clinical_features = geo_select_clinical_features(
|
75 |
+
clinical_df=clinical_data,
|
76 |
+
trait=trait,
|
77 |
+
trait_row=trait_row,
|
78 |
+
convert_trait=convert_trait,
|
79 |
+
age_row=age_row,
|
80 |
+
convert_age=convert_age,
|
81 |
+
gender_row=gender_row,
|
82 |
+
convert_gender=convert_gender
|
83 |
+
)
|
84 |
+
|
85 |
+
# Preview the extracted features
|
86 |
+
preview = preview_df(clinical_features)
|
87 |
+
print("Preview of clinical features:")
|
88 |
+
print(preview)
|
89 |
+
|
90 |
+
# Save clinical data
|
91 |
+
clinical_features.to_csv(out_clinical_data_file)
|
92 |
+
# Extract gene expression data from the matrix file
|
93 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
94 |
+
|
95 |
+
# Print first 20 row IDs
|
96 |
+
print("First 20 row IDs:")
|
97 |
+
print(genetic_data.index[:20].tolist())
|
98 |
+
# These identifiers appear to be probe/sequence IDs from a microarray platform
|
99 |
+
# The '_at' suffix is characteristic of Affymetrix probe IDs
|
100 |
+
# They need to be mapped to official human gene symbols for analysis
|
101 |
+
requires_gene_mapping = True
|
102 |
+
# Extract gene annotation data from SOFT file
|
103 |
+
gene_metadata = get_gene_annotation(soft_file_path)
|
104 |
+
|
105 |
+
# Display information about the annotation data
|
106 |
+
print("Column names:")
|
107 |
+
print(gene_metadata.columns.tolist())
|
108 |
+
|
109 |
+
# Look at general data statistics
|
110 |
+
print("\nData shape:", gene_metadata.shape)
|
111 |
+
|
112 |
+
# Preview the first few rows
|
113 |
+
print("\nPreview of the annotation data:")
|
114 |
+
print(json.dumps(preview_df(gene_metadata), indent=2))
|
115 |
+
# Extract mapping information from annotation data
|
116 |
+
# The 'ID' column matches the gene identifiers in expression data (microarray probe IDs)
|
117 |
+
# The Description column contains gene names that can be mapped to gene symbols
|
118 |
+
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Description')
|
119 |
+
|
120 |
+
# Convert probe-level data to gene expression data by mapping probe IDs to gene symbols
|
121 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_df)
|
122 |
+
|
123 |
+
# Preview the resulting gene expression data
|
124 |
+
print("Gene expression data shape:", gene_data.shape)
|
125 |
+
print("\nFirst few gene symbols:")
|
126 |
+
print(list(gene_data.index[:5]))
|
127 |
+
# 1. Normalize gene symbols
|
128 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
129 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
130 |
+
gene_data.to_csv(out_gene_data_file)
|
131 |
+
|
132 |
+
# 2. Link clinical and genetic data
|
133 |
+
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
|
134 |
+
|
135 |
+
# 3. Handle missing values
|
136 |
+
linked_data = handle_missing_values(linked_data, trait)
|
137 |
+
|
138 |
+
# Early exit if trait values are all NaN
|
139 |
+
if linked_data[trait].isna().all():
|
140 |
+
is_biased = True
|
141 |
+
linked_data = None
|
142 |
+
else:
|
143 |
+
# 4. Judge whether features are biased and remove biased demographic features
|
144 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
145 |
+
|
146 |
+
# 5. Final validation and save metadata
|
147 |
+
note = "Dataset from a cancer gene expression study using oligonucleotide microarrays, containing samples of kidney chromophobe tumors and normal tissues."
|
148 |
+
is_usable = validate_and_save_cohort_info(
|
149 |
+
is_final=True,
|
150 |
+
cohort=cohort,
|
151 |
+
info_path=json_path,
|
152 |
+
is_gene_available=True,
|
153 |
+
is_trait_available=True,
|
154 |
+
is_biased=is_biased,
|
155 |
+
df=linked_data,
|
156 |
+
note=note
|
157 |
+
)
|
158 |
+
|
159 |
+
# 6. Save the linked data only if it's usable
|
160 |
+
if is_usable:
|
161 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
162 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Kidney_Clear_Cell_Carcinoma/code/GSE95425.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Kidney_Clear_Cell_Carcinoma"
|
6 |
+
cohort = "GSE95425"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Kidney_Clear_Cell_Carcinoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Kidney_Clear_Cell_Carcinoma/GSE95425"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/GSE95425.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/gene_data/GSE95425.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/clinical_data/GSE95425.csv"
|
16 |
+
json_path = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
|
24 |
+
# Get unique values for each clinical feature
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background information
|
28 |
+
print("Background Information:")
|
29 |
+
print(background_info)
|
30 |
+
print("\nSample Characteristics:")
|
31 |
+
print(json.dumps(unique_values_dict, indent=2))
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# Yes - the study looks at transcriptomes which means gene expression data
|
34 |
+
is_gene_available = True
|
35 |
+
|
36 |
+
# 2. Variable Availability and Data Type Conversion
|
37 |
+
# 2.1 Data Availability
|
38 |
+
# For trait: Can infer from sampling depth (row 2)
|
39 |
+
trait_row = 2
|
40 |
+
# No age or gender data available
|
41 |
+
age_row = None
|
42 |
+
gender_row = None
|
43 |
+
|
44 |
+
# 2.2 Data Type Conversion Functions
|
45 |
+
def convert_trait(value: str) -> int:
|
46 |
+
"""Convert sampling depth to binary trait (cortex vs medulla).
|
47 |
+
0 = cortex (normal), 1 = medulla"""
|
48 |
+
if pd.isna(value):
|
49 |
+
return None
|
50 |
+
value = value.split(": ")[1].lower()
|
51 |
+
if value == "cortex":
|
52 |
+
return 0
|
53 |
+
elif value == "medulla":
|
54 |
+
return 1
|
55 |
+
# Mixed category treated as missing
|
56 |
+
return None
|
57 |
+
|
58 |
+
convert_age = None
|
59 |
+
convert_gender = None
|
60 |
+
|
61 |
+
# 3. Save Metadata
|
62 |
+
is_trait_available = (trait_row is not None)
|
63 |
+
_ = validate_and_save_cohort_info(is_final=False,
|
64 |
+
cohort=cohort,
|
65 |
+
info_path=json_path,
|
66 |
+
is_gene_available=is_gene_available,
|
67 |
+
is_trait_available=is_trait_available)
|
68 |
+
|
69 |
+
# 4. Clinical Feature Extraction
|
70 |
+
if trait_row is not None:
|
71 |
+
clinical_features = geo_select_clinical_features(
|
72 |
+
clinical_df=clinical_data,
|
73 |
+
trait=trait,
|
74 |
+
trait_row=trait_row,
|
75 |
+
convert_trait=convert_trait,
|
76 |
+
age_row=age_row,
|
77 |
+
convert_age=convert_age,
|
78 |
+
gender_row=gender_row,
|
79 |
+
convert_gender=convert_gender
|
80 |
+
)
|
81 |
+
|
82 |
+
# Preview the extracted features
|
83 |
+
preview = preview_df(clinical_features)
|
84 |
+
print("Preview of clinical features:")
|
85 |
+
print(preview)
|
86 |
+
|
87 |
+
# Save to CSV
|
88 |
+
clinical_features.to_csv(out_clinical_data_file)
|
89 |
+
# Extract gene expression data from the matrix file
|
90 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
91 |
+
|
92 |
+
# Print first 20 row IDs
|
93 |
+
print("First 20 row IDs:")
|
94 |
+
print(genetic_data.index[:20].tolist())
|
95 |
+
# The IDs are Illumina probe IDs (e.g., ILMN_1343291) rather than human gene symbols
|
96 |
+
# These need to be mapped to standard gene symbols for analysis
|
97 |
+
requires_gene_mapping = True
|
98 |
+
# Extract gene annotation data from SOFT file
|
99 |
+
gene_metadata = get_gene_annotation(soft_file_path)
|
100 |
+
|
101 |
+
# Display information about the annotation data
|
102 |
+
print("Column names:")
|
103 |
+
print(gene_metadata.columns.tolist())
|
104 |
+
|
105 |
+
# Look at general data statistics
|
106 |
+
print("\nData shape:", gene_metadata.shape)
|
107 |
+
|
108 |
+
# Preview the first few rows
|
109 |
+
print("\nPreview of the annotation data:")
|
110 |
+
print(json.dumps(preview_df(gene_metadata), indent=2))
|
111 |
+
# 1. From observation:
|
112 |
+
# - Gene expression data uses ILMN_ IDs like 'ILMN_1343291'
|
113 |
+
# - In gene annotation, 'ID' column has the same ILMN_ identifiers
|
114 |
+
# - 'Symbol' column contains the gene symbols we want to map to
|
115 |
+
|
116 |
+
# 2. Extract gene mapping data
|
117 |
+
mapping_data = get_gene_mapping(gene_metadata, 'ID', 'Symbol')
|
118 |
+
|
119 |
+
# 3. Convert probe level data to gene expression data using the mapping
|
120 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_data)
|
121 |
+
|
122 |
+
# Preview first few genes and their expression values
|
123 |
+
print("\nPreview of mapped gene expression data:")
|
124 |
+
print(json.dumps(preview_df(gene_data), indent=2))
|
125 |
+
# 1. Normalize gene symbols
|
126 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
127 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
128 |
+
gene_data.to_csv(out_gene_data_file)
|
129 |
+
|
130 |
+
# 2. Link clinical and genetic data
|
131 |
+
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
|
132 |
+
|
133 |
+
# 3. Handle missing values
|
134 |
+
linked_data = handle_missing_values(linked_data, trait)
|
135 |
+
|
136 |
+
# Early exit if trait values are all NaN
|
137 |
+
if linked_data[trait].isna().all():
|
138 |
+
is_biased = True
|
139 |
+
linked_data = None
|
140 |
+
else:
|
141 |
+
# 4. Judge whether features are biased and remove biased demographic features
|
142 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
143 |
+
|
144 |
+
# 5. Final validation and save metadata
|
145 |
+
note = "Dataset from a cancer gene expression study using oligonucleotide microarrays, containing samples of kidney chromophobe tumors and normal tissues."
|
146 |
+
is_usable = validate_and_save_cohort_info(
|
147 |
+
is_final=True,
|
148 |
+
cohort=cohort,
|
149 |
+
info_path=json_path,
|
150 |
+
is_gene_available=True,
|
151 |
+
is_trait_available=True,
|
152 |
+
is_biased=is_biased,
|
153 |
+
df=linked_data,
|
154 |
+
note=note
|
155 |
+
)
|
156 |
+
|
157 |
+
# 6. Save the linked data only if it's usable
|
158 |
+
if is_usable:
|
159 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
160 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Kidney_Clear_Cell_Carcinoma/code/TCGA.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Kidney_Clear_Cell_Carcinoma"
|
6 |
+
|
7 |
+
# Input paths
|
8 |
+
tcga_root_dir = "../DATA/TCGA"
|
9 |
+
|
10 |
+
# Output paths
|
11 |
+
out_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/TCGA.csv"
|
12 |
+
out_gene_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/gene_data/TCGA.csv"
|
13 |
+
out_clinical_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/clinical_data/TCGA.csv"
|
14 |
+
json_path = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/cohort_info.json"
|
15 |
+
|
16 |
+
# Select the relevant directory
|
17 |
+
cohort_dir = os.path.join(tcga_root_dir, 'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)')
|
18 |
+
|
19 |
+
# Get paths to clinical and genetic data files
|
20 |
+
clinical_file, genetic_file = tcga_get_relevant_filepaths(cohort_dir)
|
21 |
+
|
22 |
+
# Load the data files
|
23 |
+
clinical_df = pd.read_csv(clinical_file, index_col=0, sep='\t')
|
24 |
+
genetic_df = pd.read_csv(genetic_file, index_col=0, sep='\t')
|
25 |
+
|
26 |
+
# Print clinical data columns for review
|
27 |
+
print("Clinical data columns:", clinical_df.columns.tolist())
|
28 |
+
|
29 |
+
# Check data availability
|
30 |
+
is_gene_available = len(genetic_df) > 0
|
31 |
+
is_trait_available = len(clinical_df) > 0
|
32 |
+
|
33 |
+
# Record data availability
|
34 |
+
validate_and_save_cohort_info(is_final=False,
|
35 |
+
cohort="TCGA",
|
36 |
+
info_path=json_path,
|
37 |
+
is_gene_available=is_gene_available,
|
38 |
+
is_trait_available=is_trait_available)
|
39 |
+
# Identify candidate columns
|
40 |
+
candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth']
|
41 |
+
candidate_gender_cols = ['gender']
|
42 |
+
|
43 |
+
# Get clinical data file path
|
44 |
+
clinical_file_path, _ = tcga_get_relevant_filepaths(os.path.join(tcga_root_dir, trait))
|
45 |
+
|
46 |
+
# Read clinical data
|
47 |
+
clinical_df = pd.read_csv(clinical_file_path, index_col=0)
|
48 |
+
|
49 |
+
# Preview age columns
|
50 |
+
age_preview = {}
|
51 |
+
for col in candidate_age_cols:
|
52 |
+
age_preview[col] = clinical_df[col].head(5).tolist()
|
53 |
+
print("Age columns preview:")
|
54 |
+
print(age_preview)
|
55 |
+
|
56 |
+
# Preview gender columns
|
57 |
+
gender_preview = {}
|
58 |
+
for col in candidate_gender_cols:
|
59 |
+
gender_preview[col] = clinical_df[col].head(5).tolist()
|
60 |
+
print("\nGender columns preview:")
|
61 |
+
print(gender_preview)
|
62 |
+
# Select the relevant directory
|
63 |
+
cohort_dir = os.path.join(tcga_root_dir, 'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)')
|
64 |
+
|
65 |
+
# Get paths to clinical and genetic data files
|
66 |
+
clinical_file, genetic_file = tcga_get_relevant_filepaths(cohort_dir)
|
67 |
+
|
68 |
+
# Load the data files
|
69 |
+
clinical_df = pd.read_csv(clinical_file, index_col=0, sep='\t')
|
70 |
+
genetic_df = pd.read_csv(genetic_file, index_col=0, sep='\t')
|
71 |
+
|
72 |
+
# Print clinical data columns for review
|
73 |
+
print("Clinical data columns:", clinical_df.columns.tolist())
|
74 |
+
|
75 |
+
# Check data availability
|
76 |
+
is_gene_available = len(genetic_df) > 0
|
77 |
+
is_trait_available = len(clinical_df) > 0
|
78 |
+
|
79 |
+
# Record data availability
|
80 |
+
validate_and_save_cohort_info(is_final=False,
|
81 |
+
cohort="TCGA",
|
82 |
+
info_path=json_path,
|
83 |
+
is_gene_available=is_gene_available,
|
84 |
+
is_trait_available=is_trait_available)
|
85 |
+
# From the clinical columns, identify suitable columns for age and gender
|
86 |
+
age_col = "age_at_initial_pathologic_diagnosis" # Most relevant and direct age column
|
87 |
+
gender_col = "gender" # Direct gender information column
|
88 |
+
|
89 |
+
# Print chosen columns
|
90 |
+
print(f"Selected age column: {age_col}")
|
91 |
+
print(f"Selected gender column: {gender_col}")
|
92 |
+
# Select demographic columns
|
93 |
+
age_col = "age_at_initial_pathologic_diagnosis"
|
94 |
+
gender_col = "gender"
|
95 |
+
|
96 |
+
# Extract and standardize clinical features
|
97 |
+
selected_clinical_df = tcga_select_clinical_features(clinical_df, trait, age_col, gender_col)
|
98 |
+
selected_clinical_df.to_csv(out_clinical_data_file)
|
99 |
+
|
100 |
+
# Normalize gene symbols and save
|
101 |
+
normalized_genetic_df = normalize_gene_symbols_in_index(genetic_df)
|
102 |
+
normalized_genetic_df.to_csv(out_gene_data_file)
|
103 |
+
|
104 |
+
# Link clinical and genetic data
|
105 |
+
linked_data = pd.concat([selected_clinical_df, normalized_genetic_df.T], axis=1)
|
106 |
+
|
107 |
+
# Handle missing values
|
108 |
+
linked_data = handle_missing_values(linked_data, trait)
|
109 |
+
|
110 |
+
# Judge whether features are biased and remove biased demographic features
|
111 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
112 |
+
|
113 |
+
# Final validation and save cohort info
|
114 |
+
is_usable = validate_and_save_cohort_info(
|
115 |
+
is_final=True,
|
116 |
+
cohort="TCGA",
|
117 |
+
info_path=json_path,
|
118 |
+
is_gene_available=True,
|
119 |
+
is_trait_available=True,
|
120 |
+
is_biased=trait_biased,
|
121 |
+
df=linked_data,
|
122 |
+
note="TCGA kidney clear cell carcinoma data comparing tumor vs normal tissue samples"
|
123 |
+
)
|
124 |
+
|
125 |
+
# Save linked data if usable
|
126 |
+
if is_usable:
|
127 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Kidney_Clear_Cell_Carcinoma/cohort_info.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"GSE95425": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 47, "note": "Dataset from a cancer gene expression study using oligonucleotide microarrays, containing samples of kidney chromophobe tumors and normal tissues."}, "GSE94321": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 32, "note": "Dataset from a cancer gene expression study using oligonucleotide microarrays, containing samples of kidney chromophobe tumors and normal tissues."}, "GSE245862": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Dataset from a cancer gene expression study using oligonucleotide microarrays, containing samples of kidney chromophobe tumors and normal tissues."}, "GSE150404": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": true, "has_gender": true, "sample_size": 60, "note": "Dataset from a cancer gene expression study using oligonucleotide microarrays, containing samples of kidney chromophobe tumors and normal tissues."}, "GSE131027": {"is_usable": false, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": true, "has_age": false, "has_gender": false, "sample_size": 92, "note": "Dataset from a cancer gene expression study using oligonucleotide microarrays, containing samples of kidney chromophobe tumors and normal tissues."}, "GSE119958": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 100, "note": "Dataset from gene expression microarray profiling of proximal tubule cells from African American individuals, comparing samples with different APOL1 genotypes."}, "GSE117230": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 40, "note": "Dataset from gene expression microarray profiling of proximal tubule cells from African American individuals, comparing samples with different APOL1 genotypes."}, "GSE106757": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 36, "note": "This dataset contains gene expression data from blood monocyte subsets comparing renal cell carcinoma patients with healthy donors."}, "GSE102807": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}, "TCGA": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "TCGA kidney clear cell carcinoma data comparing tumor vs normal tissue samples"}}
|
p3/preprocess/Kidney_Clear_Cell_Carcinoma/gene_data/GSE106757.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Kidney_Clear_Cell_Carcinoma/gene_data/GSE117230.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56124afdab7b625c9192a2acd64fa36f92511af8543ef2385905163249730e58
|
3 |
+
size 11964637
|
p3/preprocess/Kidney_Clear_Cell_Carcinoma/gene_data/GSE119958.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f76ebcc99bec999b25e856915f78eb30032a07849350d81f3f8708ee28632c5f
|
3 |
+
size 31117591
|
p3/preprocess/Kidney_Clear_Cell_Carcinoma/gene_data/GSE131027.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a8582008fe6fc5b90879aea7d12ca4ea58cc0bbe03209acb333425d229be6e33
|
3 |
+
size 24379939
|
p3/preprocess/Kidney_Clear_Cell_Carcinoma/gene_data/GSE150404.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be96ac966dd5a178bbcf35e7d89ef7d97ea50b5016807c0736a678b69a23235a
|
3 |
+
size 16759412
|
p3/preprocess/Kidney_Clear_Cell_Carcinoma/gene_data/GSE245862.csv
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Gene,GSM7850012,GSM7850013,GSM7850014,GSM7850015,GSM7850016,GSM7850017,GSM7850018,GSM7850019,GSM7850020,GSM7850021,GSM7850022,GSM7850023,GSM7850024,GSM7850025,GSM7850026,GSM7850027,GSM7850028,GSM7850029,GSM7850030,GSM7850031,GSM7850032,GSM7850033,GSM7850034,GSM7850035,GSM7850036,GSM7850038,GSM7850039,GSM7850040,GSM7850041,GSM7850042,GSM7850043,GSM7850044,GSM7850045,GSM7850046,GSM7850047,GSM7850048,GSM7850049,GSM7850050,GSM7850051,GSM7850052,GSM7850053,GSM7850054,GSM7850055,GSM7850056,GSM7850057
|
p3/preprocess/Kidney_Clear_Cell_Carcinoma/gene_data/GSE94321.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Kidney_Clear_Cell_Carcinoma/gene_data/GSE95425.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Kidney_Clear_Cell_Carcinoma/gene_data/TCGA.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad56d64496541ee0872327215eca3da6769d5e7ccee6a3d8759e9c00555c00ed
|
3 |
+
size 182067513
|
p3/preprocess/Kidney_Papillary_Cell_Carcinoma/GSE40912.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|