File size: 5,697 Bytes
f811ee7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Kidney_Clear_Cell_Carcinoma"
cohort = "GSE245862"
# Input paths
in_trait_dir = "../DATA/GEO/Kidney_Clear_Cell_Carcinoma"
in_cohort_dir = "../DATA/GEO/Kidney_Clear_Cell_Carcinoma/GSE245862"
# Output paths
out_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/GSE245862.csv"
out_gene_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/gene_data/GSE245862.csv"
out_clinical_data_file = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/clinical_data/GSE245862.csv"
json_path = "./output/preprocess/3/Kidney_Clear_Cell_Carcinoma/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Get unique values for each clinical feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background information
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene expression data availability
# Yes, this is a microarray study of gene expression data
is_gene_available = True
# 2.1 Data availability
# Looking at sample characteristics - key 0 contains phenotype data that can be used for trait classification
trait_row = 0
# Age and gender information not available in sample characteristics
age_row = None
gender_row = None
# 2.2 Data type conversion functions
def convert_trait(value):
"""Convert phenotype to binary - normal (0) vs modified STAT3 (1)"""
if not isinstance(value, str):
return None
if ':' in value:
value = value.split(':', 1)[1].strip()
if "Normal" in value:
return 0
elif value: # Any modified STAT3 phenotype
return 1
return None
convert_age = None
convert_gender = None
# 3. Save metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Extract clinical features since trait data is available
clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview extracted features
print(preview_df(clinical_df))
# Save clinical data
clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from the matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 row IDs
print("First 20 row IDs:")
print(genetic_data.index[:20].tolist())
# The IDs appear to be probe IDs or accession numbers, not gene symbols
# They are numerical identifiers, whereas gene symbols are typically alphanumeric like 'BRCA1', 'TP53' etc.
# Therefore mapping to gene symbols will be required
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_file_path)
# Display information about the annotation data
print("Column names:")
print(gene_metadata.columns.tolist())
# Look at general data statistics
print("\nData shape:", gene_metadata.shape)
# Preview the first few rows
print("\nPreview of the annotation data:")
print(json.dumps(preview_df(gene_metadata), indent=2))
# Extract gene symbols from annotations and create mapping
def extract_hgnc_symbols(text):
"""Extract HGNC gene symbols from annotation text"""
if not isinstance(text, str):
return []
pattern = r"HGNC Symbol;Acc:HGNC:\d+\] // ([A-Z][A-Z0-9-]+)"
matches = re.findall(pattern, text)
return list(set(matches))
mapping_df = gene_metadata[['ID', 'SPOT_ID.1']].copy()
mapping_df['Gene'] = mapping_df['SPOT_ID.1'].apply(extract_hgnc_symbols)
mapping_df = mapping_df[['ID', 'Gene']]
# Convert probe measurements to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Normalize gene symbols to their latest official symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
# Preview processed gene data
print("Preview of gene data after mapping:")
print(preview_df(gene_data))
# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# Select clinical features
clinical_features = geo_select_clinical_features(
clinical_data, # Use clinical_data from previous steps
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# 1. Gene data already normalized in previous step
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Judge whether features are biased and remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and save metadata
note = "Dataset from a cancer gene expression study using oligonucleotide microarrays, containing samples of kidney chromophobe tumors and normal tissues."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note=note
)
# 6. Save the linked data only if it's usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |