File size: 5,246 Bytes
f811ee7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Kidney_stones"
cohort = "GSE73680"
# Input paths
in_trait_dir = "../DATA/GEO/Kidney_stones"
in_cohort_dir = "../DATA/GEO/Kidney_stones/GSE73680"
# Output paths
out_data_file = "./output/preprocess/3/Kidney_stones/GSE73680.csv"
out_gene_data_file = "./output/preprocess/3/Kidney_stones/gene_data/GSE73680.csv"
out_clinical_data_file = "./output/preprocess/3/Kidney_stones/clinical_data/GSE73680.csv"
json_path = "./output/preprocess/3/Kidney_stones/cohort_info.json"
# Get paths for relevant files
soft_path, matrix_path = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_path)
# Get unique values for each clinical feature
sample_chars = get_unique_values_by_row(clinical_data)
# Print dataset background information
print("Background Information:")
print(background_info)
print("\nClinical Features Overview:")
print(json.dumps(sample_chars, indent=2))
# 1. Gene Expression Data Availability
# Yes, this is a microarray gene expression study comparing Randall's Plaque vs normal tissue
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
trait_row = 2 # Can infer stone status from tissue type
age_row = None # Age not available
gender_row = 0 # Gender is available
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
"""Convert tissue type to binary stone status (0: no stones, 1: stone former)"""
if not value or ":" not in value:
return None
value = value.split(":")[1].strip().lower()
if "control patients without any kidney stone" in value:
return 0
elif "from calcium stone" in value:
return 1
return None
def convert_gender(value: str) -> int:
"""Convert gender to binary (0: female, 1: male)"""
if not value or ":" not in value:
return None
value = value.split(":")[1].strip().lower()
if value == "female":
return 0
elif value == "male":
return 1
return None
# 3. Save Metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Clinical Feature Extraction
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=None,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the processed clinical features
print("Preview of processed clinical features:")
print(preview_df(clinical_features))
# Save clinical features
clinical_features.to_csv(out_clinical_data_file)
# Get gene expression data
genetic_data = get_genetic_data(matrix_path)
# Preview raw data structure
print("First few rows of the raw data:")
print(genetic_data.head())
print("\nShape of the data:")
print(genetic_data.shape)
# Print first 20 row IDs to verify data structure
print("\nFirst 20 probe/gene identifiers:")
print(list(genetic_data.index)[:20])
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_path)
# Preview annotation data structure
print("Gene annotation data preview:")
print(preview_df(gene_metadata))
# 1. Identify the mapping columns: ID for probe identifiers, GENE_SYMBOL for gene symbols
# 2. Get gene mapping dataframe
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL')
# 3. Apply gene mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Preview mapped gene data
print("\nFirst few rows of mapped gene expression data:")
print(gene_data.head())
print("\nShape after mapping:")
print(gene_data.shape)
# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biased features and remove biased demographic ones
# The function will print detailed distribution information
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate and save metadata about dataset quality
# The validation is affected by if the trait is biased, if the data has been filtered out, etc.
note = "This dataset compares gene expression between matched tumor and non-tumor kidney tissue samples."
is_usable = validate_and_save_cohort_info(is_final=True, cohort=cohort, info_path=json_path,
is_gene_available=True, is_trait_available=True,
is_biased=trait_biased, df=linked_data, note=note)
# 6. Save linked data if usable
if is_usable:
linked_data.to_csv(out_data_file) |