File size: 5,246 Bytes
f811ee7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Kidney_stones"
cohort = "GSE73680"

# Input paths
in_trait_dir = "../DATA/GEO/Kidney_stones"
in_cohort_dir = "../DATA/GEO/Kidney_stones/GSE73680"

# Output paths
out_data_file = "./output/preprocess/3/Kidney_stones/GSE73680.csv"
out_gene_data_file = "./output/preprocess/3/Kidney_stones/gene_data/GSE73680.csv"
out_clinical_data_file = "./output/preprocess/3/Kidney_stones/clinical_data/GSE73680.csv"
json_path = "./output/preprocess/3/Kidney_stones/cohort_info.json"

# Get paths for relevant files
soft_path, matrix_path = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_path)

# Get unique values for each clinical feature
sample_chars = get_unique_values_by_row(clinical_data)

# Print dataset background information
print("Background Information:")
print(background_info)
print("\nClinical Features Overview:")
print(json.dumps(sample_chars, indent=2))
# 1. Gene Expression Data Availability
# Yes, this is a microarray gene expression study comparing Randall's Plaque vs normal tissue
is_gene_available = True

# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
trait_row = 2  # Can infer stone status from tissue type
age_row = None # Age not available
gender_row = 0 # Gender is available

# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
    """Convert tissue type to binary stone status (0: no stones, 1: stone former)"""
    if not value or ":" not in value:
        return None
    value = value.split(":")[1].strip().lower()
    if "control patients without any kidney stone" in value:
        return 0
    elif "from calcium stone" in value:
        return 1
    return None

def convert_gender(value: str) -> int:
    """Convert gender to binary (0: female, 1: male)"""
    if not value or ":" not in value:
        return None
    value = value.split(":")[1].strip().lower()
    if value == "female":
        return 0
    elif value == "male":
        return 1
    return None

# 3. Save Metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=trait_row is not None
)

# 4. Clinical Feature Extraction 
if trait_row is not None:
    clinical_features = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=None,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the processed clinical features
    print("Preview of processed clinical features:")
    print(preview_df(clinical_features))
    
    # Save clinical features
    clinical_features.to_csv(out_clinical_data_file)
# Get gene expression data
genetic_data = get_genetic_data(matrix_path)

# Preview raw data structure
print("First few rows of the raw data:")
print(genetic_data.head())

print("\nShape of the data:")
print(genetic_data.shape)

# Print first 20 row IDs to verify data structure 
print("\nFirst 20 probe/gene identifiers:")
print(list(genetic_data.index)[:20])
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_path)

# Preview annotation data structure
print("Gene annotation data preview:")
print(preview_df(gene_metadata))
# 1. Identify the mapping columns: ID for probe identifiers, GENE_SYMBOL for gene symbols
# 2. Get gene mapping dataframe
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL')

# 3. Apply gene mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Preview mapped gene data
print("\nFirst few rows of mapped gene expression data:")
print(gene_data.head())

print("\nShape after mapping:")
print(gene_data.shape)

# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data 
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for biased features and remove biased demographic ones
# The function will print detailed distribution information
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Validate and save metadata about dataset quality
# The validation is affected by if the trait is biased, if the data has been filtered out, etc.
note = "This dataset compares gene expression between matched tumor and non-tumor kidney tissue samples."
is_usable = validate_and_save_cohort_info(is_final=True, cohort=cohort, info_path=json_path,
                                         is_gene_available=True, is_trait_available=True, 
                                         is_biased=trait_biased, df=linked_data, note=note)

# 6. Save linked data if usable
if is_usable:
    linked_data.to_csv(out_data_file)