File size: 4,178 Bytes
7623c74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "LDL_Cholesterol_Levels"
cohort = "GSE28893"

# Input paths
in_trait_dir = "../DATA/GEO/LDL_Cholesterol_Levels"
in_cohort_dir = "../DATA/GEO/LDL_Cholesterol_Levels/GSE28893"

# Output paths
out_data_file = "./output/preprocess/3/LDL_Cholesterol_Levels/GSE28893.csv"
out_gene_data_file = "./output/preprocess/3/LDL_Cholesterol_Levels/gene_data/GSE28893.csv"
out_clinical_data_file = "./output/preprocess/3/LDL_Cholesterol_Levels/clinical_data/GSE28893.csv"
json_path = "./output/preprocess/3/LDL_Cholesterol_Levels/cohort_info.json"

# Get paths for relevant files
soft_path, matrix_path = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_path)

# Get unique values for each clinical feature
sample_chars = get_unique_values_by_row(clinical_data)

# Print dataset background information
print("Background Information:")
print(background_info)
print("\nClinical Features Overview:")
print(json.dumps(sample_chars, indent=2))
# 1. Gene Expression Data Availability
# The dataset is from Illumina Expression Array and is about gene expression in liver tissue
is_gene_available = True

# 2.1 Data Availability
# From background info, this study includes eQTLs related to LDL cholesterol levels
# But trait values are not directly available in sample characteristics
trait_row = None

# Age data is available in row 1
age_row = 1

# Gender data is available in row 2 
gender_row = 2

# 2.2 Data Type Conversion Functions
def convert_trait(x):
    # Not needed since trait data is not available
    return None

def convert_age(x):
    try:
        # Extract number after colon
        age = int(x.split(': ')[1])
        return age
    except:
        return None
        
def convert_gender(x):
    try:
        # Extract value after colon and convert to binary
        gender = x.split(': ')[1]
        if gender == 'F':
            return 0
        elif gender == 'M':
            return 1
        return None
    except:
        return None

# 3. Save metadata - initial filtering
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=False
)

# 4. Skip clinical feature extraction since trait_row is None
# Get gene expression data
genetic_data = get_genetic_data(matrix_path)

# Preview raw data structure
print("First few rows of the raw data:")
print(genetic_data.head())

print("\nShape of the data:")
print(genetic_data.shape)

# Print first 20 row IDs to verify data structure 
print("\nFirst 20 probe/gene identifiers:")
print(list(genetic_data.index)[:20])
# These IDs start with "ILMN_" which indicates they are Illumina probe IDs, not gene symbols
requires_gene_mapping = True
# Extract gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_path)

# Preview annotation data structure
print("Gene annotation data preview:")
print(preview_df(gene_metadata))
# 1. 'ID' column in metadata matches ILMN probe IDs in expression data
# 'Symbol' column contains the gene symbols

# 2. Get gene mapping data
mapping_data = get_gene_mapping(gene_metadata, "ID", "Symbol")

# 3. Convert probe-level measurements to gene-level expression
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Preview result
print("Gene expression data preview:")
print(gene_data.head())
print("\nShape after mapping:", gene_data.shape)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# Since we previously determined trait data is not available (trait_row = None),
# we cannot proceed with data linking and quality assessment
# We need to validate this cohort as not usable
note = "The dataset contains gene expression data but lacks LDL cholesterol level measurements"
is_usable = validate_and_save_cohort_info(
    is_final=False,  # Use initial filtering since we can't do final validation
    cohort=cohort, 
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=False
)