Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +3 -0
- p3/preprocess/Kidney_stones/gene_data/TCGA.csv +3 -0
- p3/preprocess/LDL_Cholesterol_Levels/GSE181339.csv +0 -0
- p3/preprocess/LDL_Cholesterol_Levels/clinical_data/GSE181339.csv +3 -0
- p3/preprocess/LDL_Cholesterol_Levels/clinical_data/GSE34945.csv +2 -0
- p3/preprocess/LDL_Cholesterol_Levels/code/GSE111567.py +120 -0
- p3/preprocess/LDL_Cholesterol_Levels/code/GSE181339.py +153 -0
- p3/preprocess/LDL_Cholesterol_Levels/code/GSE28893.py +130 -0
- p3/preprocess/LDL_Cholesterol_Levels/code/GSE34945.py +87 -0
- p3/preprocess/LDL_Cholesterol_Levels/code/TCGA.py +179 -0
- p3/preprocess/LDL_Cholesterol_Levels/cohort_info.json +1 -0
- p3/preprocess/LDL_Cholesterol_Levels/gene_data/GSE111567.csv +0 -0
- p3/preprocess/LDL_Cholesterol_Levels/gene_data/GSE181339.csv +0 -0
- p3/preprocess/Lactose_Intolerance/gene_data/GSE136395.csv +3 -0
- p3/preprocess/Lactose_Intolerance/gene_data/GSE138297.csv +3 -0
- p3/preprocess/Large_B-cell_Lymphoma/GSE243973.csv +0 -0
- p3/preprocess/Large_B-cell_Lymphoma/clinical_data/GSE114022.csv +2 -0
- p3/preprocess/Large_B-cell_Lymphoma/clinical_data/GSE142494.csv +2 -0
- p3/preprocess/Large_B-cell_Lymphoma/clinical_data/GSE145848.csv +2 -0
- p3/preprocess/Large_B-cell_Lymphoma/clinical_data/GSE156309.csv +3 -0
- p3/preprocess/Large_B-cell_Lymphoma/clinical_data/GSE159472.csv +2 -0
- p3/preprocess/Large_B-cell_Lymphoma/clinical_data/GSE173263.csv +2 -0
- p3/preprocess/Large_B-cell_Lymphoma/clinical_data/GSE197977.csv +2 -0
- p3/preprocess/Large_B-cell_Lymphoma/clinical_data/GSE243973.csv +2 -0
- p3/preprocess/Large_B-cell_Lymphoma/clinical_data/GSE248835.csv +2 -0
- p3/preprocess/Large_B-cell_Lymphoma/code/GSE114022.py +132 -0
- p3/preprocess/Large_B-cell_Lymphoma/code/GSE142494.py +118 -0
- p3/preprocess/Large_B-cell_Lymphoma/code/GSE145848.py +115 -0
- p3/preprocess/Large_B-cell_Lymphoma/code/GSE156309.py +123 -0
- p3/preprocess/Large_B-cell_Lymphoma/code/GSE159472.py +169 -0
- p3/preprocess/Large_B-cell_Lymphoma/code/GSE173263.py +120 -0
- p3/preprocess/Large_B-cell_Lymphoma/code/GSE182362.py +69 -0
- p3/preprocess/Large_B-cell_Lymphoma/code/GSE197977.py +122 -0
- p3/preprocess/Large_B-cell_Lymphoma/code/GSE243973.py +133 -0
- p3/preprocess/Large_B-cell_Lymphoma/code/GSE248835.py +109 -0
- p3/preprocess/Large_B-cell_Lymphoma/code/TCGA.py +166 -0
- p3/preprocess/Large_B-cell_Lymphoma/cohort_info.json +1 -0
- p3/preprocess/Large_B-cell_Lymphoma/gene_data/GSE243973.csv +0 -0
- p3/preprocess/Liver_Cancer/clinical_data/GSE148346.csv +2 -0
- p3/preprocess/Liver_Cancer/clinical_data/GSE164760.csv +2 -0
- p3/preprocess/Liver_Cancer/clinical_data/GSE174570.csv +2 -0
- p3/preprocess/Liver_Cancer/clinical_data/GSE228782.csv +2 -0
- p3/preprocess/Liver_Cancer/clinical_data/GSE228783.csv +2 -0
- p3/preprocess/Liver_Cancer/clinical_data/GSE45032.csv +4 -0
- p3/preprocess/Liver_Cancer/clinical_data/GSE66843.csv +2 -0
- p3/preprocess/Liver_Cancer/clinical_data/TCGA.csv +439 -0
- p3/preprocess/Liver_Cancer/code/GSE148346.py +139 -0
- p3/preprocess/Liver_Cancer/code/GSE164760.py +146 -0
- p3/preprocess/Liver_Cancer/code/GSE174570.py +81 -0
- p3/preprocess/Liver_Cancer/code/GSE178201.py +136 -0
.gitattributes
CHANGED
@@ -1853,3 +1853,6 @@ p3/preprocess/Kidney_Papillary_Cell_Carcinoma/gene_data/GSE68950.csv filter=lfs
|
|
1853 |
p3/preprocess/Kidney_Clear_Cell_Carcinoma/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1854 |
p3/preprocess/Kidney_stones/gene_data/GSE123993.csv filter=lfs diff=lfs merge=lfs -text
|
1855 |
p3/preprocess/Kidney_stones/gene_data/GSE73680.csv filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
1853 |
p3/preprocess/Kidney_Clear_Cell_Carcinoma/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1854 |
p3/preprocess/Kidney_stones/gene_data/GSE123993.csv filter=lfs diff=lfs merge=lfs -text
|
1855 |
p3/preprocess/Kidney_stones/gene_data/GSE73680.csv filter=lfs diff=lfs merge=lfs -text
|
1856 |
+
p3/preprocess/Lactose_Intolerance/gene_data/GSE136395.csv filter=lfs diff=lfs merge=lfs -text
|
1857 |
+
p3/preprocess/Kidney_stones/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1858 |
+
p3/preprocess/Lactose_Intolerance/gene_data/GSE138297.csv filter=lfs diff=lfs merge=lfs -text
|
p3/preprocess/Kidney_stones/gene_data/TCGA.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bbe84ce20bc825ee72420fdf2aeb1eb9862eeaa485441df20c9ae1263607b851
|
3 |
+
size 97074045
|
p3/preprocess/LDL_Cholesterol_Levels/GSE181339.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/LDL_Cholesterol_Levels/clinical_data/GSE181339.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
,GSM5494930,GSM5494931,GSM5494932,GSM5494933,GSM5494934,GSM5494935,GSM5494936,GSM5494937,GSM5494938,GSM5494939,GSM5494940,GSM5494941,GSM5494942,GSM5494943,GSM5494944,GSM5494945,GSM5494946,GSM5494947,GSM5494948,GSM5494949,GSM5494950,GSM5494951,GSM5494952,GSM5494953,GSM5494954,GSM5494955,GSM5494956,GSM5494957,GSM5494958,GSM5494959,GSM5494960,GSM5494961,GSM5494962,GSM5494963,GSM5494964,GSM5494965,GSM5494966,GSM5494967,GSM5494968,GSM5494969,GSM5494970,GSM5494971,GSM5494972,GSM5494973,GSM5494974,GSM5494975,GSM5494976,GSM5494977,GSM5494978,GSM5494979,GSM5494980,GSM5494981,GSM5494982,GSM5494983,GSM5494984,GSM5494985,GSM5494986,GSM5494987,GSM5494988,GSM5494989,GSM5494990,GSM5494991,GSM5494992,GSM5494993,GSM5494994,GSM5494995,GSM5494996,GSM5494997,GSM5494998,GSM5494999,GSM5495000,GSM5495001,GSM5495002,GSM5495003,GSM5495004,GSM5495005,GSM5495006,GSM5495007
|
2 |
+
LDL_Cholesterol_Levels,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
3 |
+
Gender,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0
|
p3/preprocess/LDL_Cholesterol_Levels/clinical_data/GSE34945.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM858200,GSM858201,GSM858202,GSM858203,GSM858204,GSM858205,GSM858206,GSM858207,GSM858208,GSM858209,GSM858210,GSM858211,GSM858212,GSM858213,GSM858214,GSM858215,GSM858216,GSM858217,GSM858218,GSM858219,GSM858220,GSM858221,GSM858222,GSM858223,GSM858224,GSM858225,GSM858226,GSM858227,GSM858228,GSM858229,GSM858230,GSM858231,GSM858232,GSM858233,GSM858234,GSM858235,GSM858236,GSM858237,GSM858238,GSM858239,GSM858240,GSM858241,GSM858242,GSM858243,GSM858244,GSM858245,GSM858246,GSM858247,GSM858248,GSM858249,GSM858250,GSM858251,GSM858252,GSM858253,GSM858254,GSM858255,GSM858256,GSM858257,GSM858258,GSM858259,GSM858260,GSM858261,GSM858262,GSM858263,GSM858264,GSM858265,GSM858266,GSM858267,GSM858268,GSM858269,GSM858270,GSM858271,GSM858272,GSM858273,GSM858274,GSM858275,GSM858276,GSM858277,GSM858278,GSM858279,GSM858280,GSM858281,GSM858282,GSM858283,GSM858284,GSM858285,GSM858286,GSM858287,GSM858288,GSM858289,GSM858290,GSM858291,GSM858292,GSM858293,GSM858294,GSM858295,GSM858296,GSM858297,GSM858298,GSM858299,GSM858300,GSM858301,GSM858302,GSM858303,GSM858304,GSM858305,GSM858306,GSM858307,GSM858308,GSM858309,GSM858310,GSM858311,GSM858312,GSM858313,GSM858314,GSM858315,GSM858316,GSM858317,GSM858318,GSM858319,GSM858320,GSM858321,GSM858322,GSM858323,GSM858324,GSM858325,GSM858326,GSM858327,GSM858328,GSM858329,GSM858330,GSM858331,GSM858332,GSM858333,GSM858334,GSM858335,GSM858336,GSM858337,GSM858338,GSM858339,GSM858340,GSM858341,GSM858342,GSM858343,GSM858344,GSM858345,GSM858346,GSM858347,GSM858348,GSM858349,GSM858350,GSM858351,GSM858352,GSM858353,GSM858354,GSM858355,GSM858356,GSM858357,GSM858358,GSM858359,GSM858360,GSM858361,GSM858362,GSM858363,GSM858364,GSM858365,GSM858366,GSM858367,GSM858368,GSM858369,GSM858370,GSM858371,GSM858372,GSM858373,GSM858374,GSM858375,GSM858376,GSM858377,GSM858378,GSM858379,GSM858380,GSM858381,GSM858382,GSM858383,GSM858384,GSM858385,GSM858386,GSM858387,GSM858388,GSM858389,GSM858390,GSM858391,GSM858392,GSM858393,GSM858394,GSM858395,GSM858396,GSM858397,GSM858398,GSM858399,GSM858400,GSM858401,GSM858402,GSM858403,GSM858404,GSM858405,GSM858406,GSM858407,GSM858408,GSM858409,GSM858410,GSM858411,GSM858412,GSM858413,GSM858414,GSM858415,GSM858416,GSM858417,GSM858418,GSM858419,GSM858420,GSM858421,GSM858422,GSM858423,GSM858424,GSM858425,GSM858426,GSM858427,GSM858428,GSM858429,GSM858430,GSM858431,GSM858432,GSM858433,GSM858434,GSM858435,GSM858436,GSM858437,GSM858438,GSM858439,GSM858440,GSM858441,GSM858442,GSM858443,GSM858444,GSM858445,GSM858446,GSM858447,GSM858448,GSM858449,GSM858450,GSM858451,GSM858452,GSM858453,GSM858454,GSM858455,GSM858456,GSM858457,GSM858458,GSM858459,GSM858460,GSM858461,GSM858462,GSM858463,GSM858464,GSM858465,GSM858466,GSM858467,GSM858468,GSM858469,GSM858470,GSM858471,GSM858472,GSM858473,GSM858474,GSM858475,GSM858476,GSM858477,GSM858478,GSM858479,GSM858480,GSM858481,GSM858482,GSM858483,GSM858484,GSM858485,GSM858486,GSM858487,GSM858488,GSM858489,GSM858490,GSM858491,GSM858492,GSM858493,GSM858494,GSM858495,GSM858496,GSM858497,GSM858498,GSM858499,GSM858500,GSM858501,GSM858502,GSM858503,GSM858504,GSM858505,GSM858506,GSM858507,GSM858508,GSM858509,GSM858510,GSM858511,GSM858512,GSM858513,GSM858514,GSM858515,GSM858516,GSM858517,GSM858518,GSM858519,GSM858520,GSM858521,GSM858522,GSM858523,GSM858524,GSM858525,GSM858526,GSM858527,GSM858528,GSM858529,GSM858530,GSM858531,GSM858532,GSM858533,GSM858534,GSM858535,GSM858536,GSM858537,GSM858538,GSM858539,GSM858540,GSM858541,GSM858542,GSM858543,GSM858544,GSM858545,GSM858546,GSM858547,GSM858548,GSM858549,GSM858550,GSM858551,GSM858552,GSM858553,GSM858554,GSM858555,GSM858556,GSM858557,GSM858558,GSM858559,GSM858560,GSM858561,GSM858562,GSM858563,GSM858564,GSM858565,GSM858566,GSM858567,GSM858568,GSM858569,GSM858570,GSM858571,GSM858572,GSM858573,GSM858574,GSM858575,GSM858576,GSM858577,GSM858578,GSM858579,GSM858580,GSM858581,GSM858582,GSM858583,GSM858584,GSM858585,GSM858586,GSM858587,GSM858588,GSM858589,GSM858590,GSM858591,GSM858592,GSM858593,GSM858594,GSM858595,GSM858596,GSM858597,GSM858598,GSM858599,GSM858600,GSM858601,GSM858602,GSM858603,GSM858604,GSM858605,GSM858606,GSM858607,GSM858608,GSM858609,GSM858610,GSM858611,GSM858612,GSM858613,GSM858614,GSM858615,GSM858616,GSM858617,GSM858618,GSM858619,GSM858620,GSM858621,GSM858622,GSM858623,GSM858624,GSM858625,GSM858626,GSM858627,GSM858628,GSM858629,GSM858630,GSM858631,GSM858632,GSM858633,GSM858634,GSM858635,GSM858636,GSM858637,GSM858638,GSM858639,GSM858640,GSM858641,GSM858642,GSM858643,GSM858644,GSM858645,GSM858646,GSM858647,GSM858648,GSM858649,GSM858650,GSM858651,GSM858652,GSM858653,GSM858654,GSM858655,GSM858656,GSM858657,GSM858658,GSM858659,GSM858660,GSM858661,GSM858662,GSM858663,GSM858664,GSM858665,GSM858666,GSM858667,GSM858668,GSM858669,GSM858670,GSM858671,GSM858672,GSM858673,GSM858674,GSM858675,GSM858676,GSM858677,GSM858678,GSM858679,GSM858680,GSM858681,GSM858682,GSM858683,GSM858684,GSM858685,GSM858686,GSM858687,GSM858688,GSM858689,GSM858690,GSM858691,GSM858692,GSM858693,GSM858694,GSM858695,GSM858696,GSM858697,GSM858698,GSM858699,GSM858700,GSM858701,GSM858702,GSM858703,GSM858704,GSM858705,GSM858706,GSM858707,GSM858708,GSM858709,GSM858710,GSM858711,GSM858712,GSM858713,GSM858714,GSM858715,GSM858716,GSM858717,GSM858718,GSM858719,GSM858720,GSM858721,GSM858722,GSM858723,GSM858724,GSM858725,GSM858726,GSM858727,GSM858728,GSM858729,GSM858730,GSM858731,GSM858732,GSM858733,GSM858734,GSM858735,GSM858736,GSM858737,GSM858738,GSM858739,GSM858740,GSM858741,GSM858742,GSM858743,GSM858744,GSM858745,GSM858746,GSM858747,GSM858748,GSM858749,GSM858750,GSM858751,GSM858752,GSM858753,GSM858754,GSM858755,GSM858756,GSM858757,GSM858758,GSM858759,GSM858760,GSM858761,GSM858762,GSM858763,GSM858764,GSM858765,GSM858766,GSM858767,GSM858768,GSM858769,GSM858770,GSM858771,GSM858772,GSM858773,GSM858774,GSM858775,GSM858776,GSM858777,GSM858778,GSM858779,GSM858780,GSM858781,GSM858782,GSM858783,GSM858784,GSM858785,GSM858786,GSM858787,GSM858788,GSM858789,GSM858790,GSM858791,GSM858792,GSM858793,GSM858794,GSM858795,GSM858796,GSM858797,GSM858798,GSM858799,GSM858800,GSM858801,GSM858802,GSM858803,GSM858804,GSM858805,GSM858806,GSM858807,GSM858808,GSM858809,GSM858810,GSM858811,GSM858812,GSM858813,GSM858814,GSM858815,GSM858816,GSM858817,GSM858818,GSM858819,GSM858820,GSM858821,GSM858822,GSM858823,GSM858824,GSM858825,GSM858826,GSM858827,GSM858828,GSM858829,GSM858830,GSM858831,GSM858832,GSM858833,GSM858834,GSM858835,GSM858836,GSM858837,GSM858838,GSM858839,GSM858840,GSM858841,GSM858842,GSM858843,GSM858844,GSM858845,GSM858846,GSM858847,GSM858848,GSM858849,GSM858850,GSM858851,GSM858852,GSM858853,GSM858854,GSM858855,GSM858856,GSM858857,GSM858858,GSM858859,GSM858860,GSM858861,GSM858862,GSM858863,GSM858864,GSM858865,GSM858866,GSM858867,GSM858868,GSM858869,GSM858870,GSM858871,GSM858872,GSM858873,GSM858874,GSM858875,GSM858876,GSM858877,GSM858878,GSM858879,GSM858880,GSM858881,GSM858882,GSM858883,GSM858884,GSM858885,GSM858886,GSM858887,GSM858888,GSM858889,GSM858890,GSM858891,GSM858892,GSM858893,GSM858894,GSM858895,GSM858896,GSM858897,GSM858898,GSM858899,GSM858900,GSM858901,GSM858902,GSM858903,GSM858904,GSM858905,GSM858906,GSM858907,GSM858908,GSM858909,GSM858910,GSM858911,GSM858912,GSM858913,GSM858914,GSM858915,GSM858916,GSM858917,GSM858918,GSM858919,GSM858920,GSM858921,GSM858922,GSM858923,GSM858924,GSM858925,GSM858926,GSM858927,GSM858928,GSM858929,GSM858930,GSM858931,GSM858932,GSM858933,GSM858934,GSM858935,GSM858936,GSM858937,GSM858938,GSM858939,GSM858940,GSM858941,GSM858942,GSM858943,GSM858944,GSM858945,GSM858946,GSM858947,GSM858948,GSM858949,GSM858950,GSM858951,GSM858952,GSM858953,GSM858954,GSM858955,GSM858956,GSM858957,GSM858958,GSM858959,GSM858960,GSM858961,GSM858962,GSM858963,GSM858964,GSM858965,GSM858966,GSM858967,GSM858968,GSM858969,GSM858970,GSM858971,GSM858972,GSM858973,GSM858974,GSM858975,GSM858976,GSM858977,GSM858978,GSM858979,GSM858980,GSM858981,GSM858982,GSM858983,GSM858984,GSM858985,GSM858986,GSM858987,GSM858988,GSM858989,GSM858990,GSM858991,GSM858992,GSM858993,GSM858994,GSM858995,GSM858996,GSM858997,GSM858998,GSM858999,GSM859000,GSM859001,GSM859002,GSM859003,GSM859004,GSM859005,GSM859006,GSM859007,GSM859008,GSM859009,GSM859010,GSM859011,GSM859012,GSM859013,GSM859014,GSM859015,GSM859016,GSM859017,GSM859018,GSM859019,GSM859020,GSM859021,GSM859022,GSM859023,GSM859024,GSM859025,GSM859026,GSM859027,GSM859028,GSM859029,GSM859030,GSM859031,GSM859032,GSM859033,GSM859034,GSM859035,GSM859036,GSM859037,GSM859038,GSM859039,GSM859040,GSM859041,GSM859042,GSM859043,GSM859044,GSM859045,GSM859046,GSM859047,GSM859048,GSM859049,GSM859050,GSM859051,GSM859052,GSM859053,GSM859054,GSM859055,GSM859056,GSM859057,GSM859058,GSM859059,GSM859060,GSM859061,GSM859062,GSM859063,GSM859064,GSM859065,GSM859066,GSM859067,GSM859068,GSM859069,GSM859070,GSM859071,GSM859072,GSM859073,GSM859074,GSM859075,GSM859076,GSM859077,GSM859078,GSM859079,GSM859080,GSM859081,GSM859082,GSM859083,GSM859084,GSM859085,GSM859086,GSM859087,GSM859088,GSM859089,GSM859090,GSM859091,GSM859092,GSM859093,GSM859094,GSM859095,GSM859096,GSM859097,GSM859098,GSM859099,GSM859100,GSM859101,GSM859102,GSM859103,GSM859104,GSM859105,GSM859106,GSM859107,GSM859108,GSM859109,GSM859110,GSM859111,GSM859112,GSM859113,GSM859114,GSM859115,GSM859116,GSM859117,GSM859118,GSM859119,GSM859120,GSM859121,GSM859122,GSM859123,GSM859124,GSM859125,GSM859126,GSM859127,GSM859128,GSM859129,GSM859130,GSM859131,GSM859132,GSM859133,GSM859134,GSM859135,GSM859136,GSM859137,GSM859138,GSM859139,GSM859140,GSM859141,GSM859142,GSM859143,GSM859144,GSM859145,GSM859146,GSM859147,GSM859148,GSM859149,GSM859150,GSM859151,GSM859152,GSM859153,GSM859154,GSM859155,GSM859156,GSM859157,GSM859158,GSM859159,GSM859160,GSM859161,GSM859162,GSM859163,GSM859164,GSM859165,GSM859166,GSM859167,GSM859168,GSM859169,GSM859170,GSM859171,GSM859172,GSM859173,GSM859174,GSM859175,GSM859176,GSM859177,GSM859178,GSM859179,GSM859180,GSM859181,GSM859182,GSM859183,GSM859184,GSM859185,GSM859186,GSM859187,GSM859188,GSM859189,GSM859190,GSM859191,GSM859192,GSM859193,GSM859194,GSM859195,GSM859196,GSM859197,GSM859198,GSM859199,GSM859200,GSM859201,GSM859202,GSM859203,GSM859204,GSM859205,GSM859206,GSM859207,GSM859208,GSM859209,GSM859210,GSM859211,GSM859212,GSM859213,GSM859214,GSM859215,GSM859216,GSM859217,GSM859218,GSM859219,GSM859220,GSM859221,GSM859222,GSM859223,GSM859224,GSM859225,GSM859226,GSM859227,GSM859228,GSM859229,GSM859230,GSM859231,GSM859232,GSM859233,GSM859234,GSM859235,GSM859236,GSM859237,GSM859238,GSM859239,GSM859240,GSM859241,GSM859242,GSM859243,GSM859244,GSM859245,GSM859246,GSM859247,GSM859248,GSM859249,GSM859250,GSM859251,GSM859252,GSM859253,GSM859254,GSM859255,GSM859256,GSM859257,GSM859258,GSM859259,GSM859260,GSM859261,GSM859262,GSM859263,GSM859264,GSM859265,GSM859266,GSM859267,GSM859268,GSM859269,GSM859270,GSM859271,GSM859272,GSM859273,GSM859274,GSM859275,GSM859276,GSM859277,GSM859278,GSM859279,GSM859280,GSM859281,GSM859282,GSM859283,GSM859284,GSM859285,GSM859286,GSM859287,GSM859288,GSM859289,GSM859290,GSM859291,GSM859292,GSM859293,GSM859294,GSM859295,GSM859296,GSM859297,GSM859298,GSM859299,GSM859300,GSM859301,GSM859302,GSM859303,GSM859304,GSM859305,GSM859306,GSM859307,GSM859308,GSM859309,GSM859310,GSM859311,GSM859312,GSM859313,GSM859314,GSM859315,GSM859316,GSM859317,GSM859318,GSM859319,GSM859320,GSM859321,GSM859322,GSM859323,GSM859324,GSM859325,GSM859326,GSM859327,GSM859328,GSM859329,GSM859330,GSM859331,GSM859332,GSM859333,GSM859334,GSM859335,GSM859336,GSM859337,GSM859338,GSM859339,GSM859340,GSM859341,GSM859342,GSM859343,GSM859344,GSM859345,GSM859346,GSM859347,GSM859348,GSM859349,GSM859350,GSM859351,GSM859352,GSM859353,GSM859354,GSM859355,GSM859356,GSM859357,GSM859358,GSM859359,GSM859360,GSM859361,GSM859362,GSM859363,GSM859364,GSM859365,GSM859366,GSM859367,GSM859368,GSM859369,GSM859370,GSM859371,GSM859372,GSM859373,GSM859374,GSM859375,GSM859376,GSM859377,GSM859378,GSM859379,GSM859380,GSM859381,GSM859382,GSM859383,GSM859384,GSM859385,GSM859386,GSM859387,GSM859388,GSM859389,GSM859390,GSM859391,GSM859392,GSM859393,GSM859394,GSM859395,GSM859396,GSM859397,GSM859398,GSM859399,GSM859400,GSM859401,GSM859402,GSM859403,GSM859404,GSM859405,GSM859406,GSM859407,GSM859408,GSM859409,GSM859410,GSM859411,GSM859412,GSM859413,GSM859414,GSM859415,GSM859416,GSM859417,GSM859418
|
2 |
+
LDL_Cholesterol_Levels,5.298013245,-47.59825328,-35.94470046,-23.8372093,-31.57894737,-20.83333333,-41.66666667,-27.92792793,-26.76056338,-32.11382114,-24.06417112,-14.48275862,-18.23899371,-35.31914894,-29.77099237,-36.95652174,-27.91666667,-8.02919708,-27.81065089,-29.76190476,-24.87309645,-29.8245614,-53.27510917,-7.352941176,-27.40384615,-26.9058296,-39.92395437,-40.75829384,-8.888888889,-6.640625,7.894736842,-61.42857143,-49.01960784,-16.44736842,-2.255639098,-34.3373494,-23.28767123,-42.0,-28.57142857,-42.66666667,-21.26245847,-41.7218543,5.479452055,-34.75177305,-25.89928058,19.40298508,-9.565217391,-35.81081081,-26.54320988,-36.40776699,24.80620155,-43.93939394,-26.74418605,6.382978723,-50.4587156,1.234567901,-37.08920188,-33.33333333,-36.80981595,-49.09090909,-44.28571429,-32.59259259,-15.52511416,-1.388888889,-30.55555556,-38.13559322,-5.660377358,-39.61352657,-49.51456311,-16.01731602,9.659090909,-35.17241379,-56.3559322,-23.25581395,-26.06060606,-18.91891892,-35.26785714,-40.4040404,-46.5,0.0,6.896551724,-24.61538462,-30.09259259,-31.57894737,-9.285714286,-11.61616162,-22.02380952,-50.0,42.06896552,-12.71676301,-25.68807339,-43.33333333,-20.76502732,-27.72277228,-18.5840708,-8.396946565,-28.11059908,-33.13253012,-3.333333333,-43.24324324,-22.05882353,-51.62454874,-17.10526316,-49.35897436,-31.61290323,-11.24031008,-42.24137931,-21.47651007,-17.00680272,-61.95286195,-12.35294118,-32.8125,-15.86206897,-12.76595745,-46.40883978,-51.02040816,-44.44444444,5.263157895,-10.2189781,-51.14503817,-46.4516129,-27.83018868,-30.15075377,-17.8343949,-28.71287129,-52.77777778,-49.24242424,-0.934579439,-16.98113208,-46.2962963,-51.17647059,-27.38853503,-25.17006803,-28.49740933,-26.8722467,-15.48387097,-35.97560976,-42.6035503,-29.45736434,2.843601896,-52.96803653,-33.09859155,-16.55172414,-6.993006993,-29.32862191,-9.090909091,-23.70689655,-14.07035176,7.975460123,-49.55752212,-26.75438596,9.844559586,-41.7218543,-36.30136986,-30.84577114,-33.74233129,-9.137055838,0.552486188,-38.76651982,-25.51724138,17.68707483,-21.76470588,-25.36764706,-33.09352518,-27.31707317,-47.09677419,-7.213114754,-47.08737864,5.063291139,-32.3943662,-32.52427184,-47.98206278,-44.67005076,-5.042016807,5.395683453,43.47826087,-38.18181818,-9.6,-29.51807229,-16.25615764,-44.04145078,-32.45614035,-26.54867257,-40.95940959,-34.44976077,-31.90789474,-39.71119134,20.40816327,-41.07142857,-3.184713376,-35.43307087,-43.47826087,-26.47058824,-38.01652893,-53.7593985,-53.51351351,-29.61165049,-36.19631902,-30.17751479,-2.604166667,-36.84210526,-44.85981308,-14.5631068,-18.06451613,-33.18777293,-47.39583333,-35.77023499,-25.86206897,-54.52196382,-27.02702703,9.090909091,-28.43601896,-44.0625,-55.73770492,-34.07821229,-9.266409266,-20.21276596,-25.0,-32.48945148,-27.38853503,-45.64102564,-70.10309278,-37.82051282,-30.06134969,-56.30252101,89.94708995,-24.85207101,14.85148515,-39.16666667,-30.56994819,-29.93197279,-8.275862069,7.857142857,-28.50241546,-48.75,-49.58677686,-44.59459459,-54.07725322,-24.35233161,-26.78571429,-45.61403509,-19.12568306,0.934579439,-36.19631902,-36.875,-25.87064677,-57.05521472,-34.41558442,-23.77622378,-33.84615385,-31.12582781,-40.33613445,-44.76987448,-50.54347826,-45.45454545,-43.91534392,-41.26984127,-50.40983607,-28.0,-16.38418079,-43.08943089,-38.70967742,-44.67005076,-51.63934426,-41.70854271,-35.97560976,15.81769437,-2.247191011,-22.08588957,-35.71428571,-42.85714286,-30.57324841,-44.44444444,-49.20634921,-11.29032258,-43.31983806,-39.18367347,-26.66666667,-25.0,-12.4137931,-52.19512195,-37.20930233,-29.14285714,-41.37931034,-37.5,-14.95327103,-37.20930233,-41.20879121,-26.19047619,-37.80487805,-18.04878049,-50.19455253,-42.25941423,-30.32258065,-21.875,-42.79279279,-40.0,-32.5,-34.74576271,-40.12738854,-44.04145078,-15.2173913,-39.71631206,-34.28571429,-43.75,-23.91304348,-10.92436975,-6.923076923,-29.36170213,-11.18881119,11.9205298,-56.16438356,-50.95238095,-15.96638655,-18.90547264,-60.52631579,-53.19148936,-50.35460993,-30.98591549,-9.248554913,-33.5078534,-35.16483516,-36.17021277,-46.8164794,-38.21989529,-0.877192982,-27.37430168,-25.92592593,-38.79781421,-73.03370787,-45.56213018,-48.7804878,-30.04291845,-32.89473684,-56.23268698,-52.5,-35.07462687,-38.7434555,-48.68913858,-41.99134199,14.56953642,-11.67883212,-0.67114094,-41.71122995,-35.29411765,-47.54098361,-54.74452555,0.0,17.24137931,-14.48275862,-49.15254237,-22.02643172,-40.25157233,-39.07103825,-58.10810811,-44.61538462,-33.61702128,-40.15151515,-55.04885993,-36.69064748,-47.27272727,-28.57142857,-23.13432836,-46.90265487,-48.85245902,-41.66666667,-27.09677419,-15.81920904,-33.10344828,-44.50867052,-24.74226804,-46.80851064,-45.45454545,-29.21348315,-23.80952381,-52.20883534,-21.12676056,-41.81818182,-16.77018634,-45.88235294,-27.10280374,-19.63190184,-42.99065421,-15.58441558,68.33333333,-7.558139535,-12.8,-58.5,-42.95774648,-30.15075377,-27.38095238,-18.03278689,-33.33333333,-22.5,-43.38624339,-41.71779141,-63.00813008,-47.82608696,-50.2617801,-20.12195122,-55.49450549,-4.761904762,-47.36842105,-45.81005587,-36.56716418,-49.71751412,-39.62264151,-51.56950673,-36.36363636,-66.86390533,-43.37349398,-42.76315789,-9.248554913,-55.98290598,-46.40151515,-56.58362989,-67.03601108,-29.19254658,-15.83333333,-34.35114504,-48.58757062,-40.55944056,-58.33333333,-23.07692308,-32.29166667,-45.83333333,-29.13043478,-22.77227723,-31.03448276,-28.28282828,2.325581395,0.571428571,-9.523809524,-25.67567568,-56.19834711,-49.72527473,-55.859375,-40.52287582,-19.8630137,-20.0,-39.13043478,510.0,-29.19708029,-24.08376963,-39.92248062,-36.07142857,-41.66666667,-38.23529412,-22.99465241,-31.19266055,-30.72625698,-31.51515152,-36.86440678,-15.92356688,-21.58273381,-0.625,-6.52173913,-28.81355932,-53.73134328,-36.70212766,-47.34513274,-25.74850299,-13.10861423,-47.01492537,-44.11764706,-36.68341709,-34.14634146,-51.83246073,-48.37398374,-61.97183099,-17.5257732,-38.31775701,-21.55172414,-47.02702703,-9.401709402,-26.11111111,50.0,-49.45652174,-32.3699422,-46.15384615,-30.43478261,-25.59726962,-16.66666667,-36.64122137,-42.05128205,-33.57664234,39.58333333,-38.88888889,-53.71621622,-36.84210526,-5.714285714,-30.06134969,-52.22222222,-47.15025907,-26.71755725,-19.04761905,-48.31460674,-27.87878788,-25.0,-41.50943396,-53.84615385,-41.31147541,-45.45454545,-40.6779661,-5.511811024,-45.03816794,-44.53125,-7.643312102,-41.63424125,-38.41059603,-34.84848485,-52.42718447,-44.09448819,-21.66666667,-7.96460177,-42.94871795,-49.26829268,-38.98916968,-36.23188406,-47.50957854,-25.0,-19.0,-37.5,5.673758865,-54.5112782,-34.74576271,-57.06521739,73.65269461,-45.02923977,-57.46606335,-33.68421053,-46.63212435,-20.49469965,-42.74193548,-18.53932584,-29.87804878,-36.68224299,23.15789474,-21.05263158,-44.04145078,-18.4,-40.34090909,-54.58515284,-50.43478261,-28.66666667,-34.19354839,-28.26086957,-27.13567839,-34.69387755,-41.07142857,-15.94202899,-37.56906077,-20.87378641,-28.18791946,-49.67741935,-14.28571429,-4.166666667,-32.63888889,-47.43589744,-35.25179856,-9.274193548,-37.22943723,-37.27810651,-43.31550802,-53.76884422,39.2,-34.22222222,-36.12565445,-27.63157895,-57.24137931,-4.812834225,-34.39490446,-43.93063584,-41.8079096,-27.63157895,-0.881057269,-27.81065089,-47.54901961,-24.11764706,-42.65402844,-18.44660194,-46.875,-21.13402062,-16.09195402,-53.0726257,-21.15384615,-36.91460055,-11.6751269,-28.15533981,-36.30136986,-54.72972973,-55.26315789,-25.11627907,-50.81967213,-19.40298507,-40.14084507,-38.75968992,-16.98113208,-25.87064677,-45.80645161,-49.10179641,-21.57894737,-43.72294372,-35.79335793,-14.0,-41.80327869,-41.7218543,-39.9103139,-0.925925926,-40.35087719,-37.73584906,22.22222222,-41.37931034,-37.45704467,-26.74418605,-51.2455516,-43.66197183,-64.0,-50.97402597,-37.69633508,-56.83060109,-38.07106599,2.112676056,-27.83018868,-58.06451613,0.0,-51.47928994,-49.77973568,-47.08994709,-32.88288288,-56.0,-55.96707819,-14.03508772,-4.166666667,-47.71573604,-14.28571429,-40.20100503,-14.65968586,-42.82051282,-67.34693878,-34.63414634,-43.82716049,-58.80149813,-23.01587302,-30.5785124,-24.0,33.57400722,-26.53061224,-23.92638037,-16.23376623,6.611570248,-24.24242424,-4.761904762,-30.26315789,-5.462184874,-31.28205128,-14.20454545,-7.80141844,0.518134715,-34.72803347,-14.72081218,23.97260274,-48.29268293,-13.15789474,-31.00775194,7.692307692,-16.05839416,1.960784314,-15.05791506,-22.56097561,-11.898017,-33.5106383,-11.88811189,-17.71653543,37.890625,-39.75409836,1.041666667,-28.41530055,2.272727273,-34.21052632,-14.79820628,60.69651741,-25.28735632,-13.49693252,-11.25541126,-6.976744186,-17.21311475,-18.43575419,18.69918699,1.754385965,13.3640553,29.47368421,-19.11111111,-2.040816327,-12.40310078,-20.51948052,-5.054151625,5.04587156,-28.71794872,-36.492891,-45.51282051,-20.70707071,-4.8,-20.76923077,-20.0,4.827586207,-21.16788321,-46.11872146,-16.77018634,-39.02439024,-11.33333333,5.833333333,35.16483517,-14.07407407,-40.61302682,-12.17948718,12.0,-24.3902439,-5.34351145,27.6119403,-17.12062257,-26.2295082,-23.15789474,-13.14285714,-46.66666667,5.594405594,-18.90756303,-25.0,-19.16666667,23.61111111,2.673796791,-43.93305439,-40.28776978,-25.90673575,-1.083032491,-5.882352941,-55.34591195,-29.78723404,-22.40437158,-14.87179487,-14.0625,-11.57024793,-29.74358974,-22.37762238,12.65306122,-20.08032129,-15.96244131,-20.83333333,-11.42857143,-25.55555556,2.580645161,0.0,-15.38461538,-13.30472103,-15.55555556,2.702702703,-31.38297872,-9.863945578,-44.0,-12.41830065,-7.865168539,-5.936073059,-21.42857143,-10.63829787,7.751937985,-48.46153846,-21.58273381,16.83168317,-20.99644128,5.660377359,-10.22727273,-24.42396313,-28.09917355,-17.69230769,-31.77083333,-6.796116505,-37.31343284,6.451612903,-22.3880597,-2.586206897,-44.39252336,-11.2,-29.25531915,22.31404959,10.82474227,-27.02702703,-23.21428571,107.9136691,-9.259259259,-12.03007519,8.474576271,-12.01923077,-19.18604651,-0.488997555,-2.631578947,2.380952381,-20.43010753,-23.45679012,-2.259887006,-17.8343949,-21.48760331,81.81818182,-32.5,-15.87301587,-27.27272727,-24.6835443,-9.090909091,-30.68783069,45.07772021,-22.26890756,-9.941520468,-22.68518519,-6.018518519,6.944444444,27.60736196,-25.92592593,-12.06896552,5.714285714,-18.03278689,-27.16981132,-23.22580645,-36.06557377,-7.462686567,12.26993865,-45.99156118,-30.72916667,-5.426356589,-22.77227723,-4.0,2.577319588,-39.23611111,-37.20136519,-13.76146789,-15.38461538,-26.63755459,-41.09090909,-36.51685393,-1.923076923,-31.16883117,2.941176471,24.47552448,-25.55555556,-7.766990291,-25.0,8.333333333,0.46728972,-20.45454545,-25.0,-37.9501385,-23.07692308,16.77852349,-38.97435897,-49.74093264,-27.67857143,-17.71428571,-12.57142857,-27.52808989,-34.66666667,-34.85714286,15.83333333,-46.5408805,16.0,5.625,-17.72727273,-22.4852071,-25.74257426,-21.54696133,-16.66666667,2.158273381,-31.81818182,-26.72413793,-31.89655172,-26.14379085,-53.55805243,10.79545455,-36.92307692,-25.20325203,25.0,-13.22751323,-10.38961039,-15.97633136,-14.13043478,-36.04651163,-6.161137441,0.81300813,-13.25301205,-22.96918768,3.636363636,-34.09090909,-9.202453988,28.93617021,-16.26984127,-26.92307692,-24.77876106,-4.47761194,-11.11111111,-13.0952381,24.50331126,-33.5078534,-37.68115942,-30.34825871,72.95081967,-32.46073298,-20.63492063,-21.63461538,-21.65898618,-10.63829787,-11.11111111,-2.877697842,-24.64454976,-15.96958175,-17.88990826,-12.04819277,-40.84507042,2.158273381,-15.02890173,-11.03448276,17.5,-41.72413793,-58.58208955,-8.368200837,-3.636363636,-7.182320442,-16.81415929,-43.91304348,-13.1147541,-27.39726027,-24.74226804,5.128205128,18.98734177,-27.3255814,-15.07537688,-36.1516035,-32.09876543,-11.23595506,-24.89959839,-58.78378378,-26.80851064,10.74380165,-25.71428571,50.94339623,-28.0,-21.27659574,-37.57225434,-15.7635468,-14.0077821,12.76595745,-34.21052632,-8.148148148,-29.54545455,-19.4092827,-7.731958763,18.78172589,30.47619048,-59.48275862,-58.88888889,-24.45414847,6.818181818,-0.854700855,-32.17054264,-40.33613445,-19.51219512,-29.88047809,-36.0,-39.01639344,-16.78321678,3.529411765,6.857142857,2.877697842,-21.15384615,-26.96629213,-62.5,12.09677419,-2.69058296,-18.51851852,8.914728682,-32.60869565,-21.05263158,1.764705882,-27.56183746,22.30215827,-28.20512821,-10.0,-21.77419355,-17.91044776,29.61373391,-13.17829457,5.142857143,-30.69306931,29.31034483,0.0,-25.12820513,-7.90960452,-19.04761905,-39.67391304,-41.86046512,-9.027777778,-5.263157895,-24.07407407,-17.27272727,-30.5785124,-38.88888889,-8.979591837,18.6440678,-11.62790698,-2.994011976,17.00680272,-6.751054852,25.0965251,-33.5106383,6.578947368,-9.322033898,-3.623188406,-29.13907285,-39.2,-14.92537313,1.818181818,-11.35135135,-10.0591716,-20.18348624,-4.580152672,-39.1025641,-35.0,-26.06837607,-30.85106383,-32.87671233,-14.54545455,-36.02771363,-37.73584906,-27.63157895,74.21875,-0.909090909,-3.278688525,-2.666666667,-19.89528796,-18.95734597,-29.50819672,-32.43243243,-14.92537313,-11.875,-20.35928144,-33.43023256,-4.21686747,-40.69767442,12.21374046,4.929577465,-27.04402516,-39.42857143,-28.87700535,-24.12280702,-37.20930233,-42.85714286,-18.18181818,-27.08333333,-35.21126761,-20.98765432,-34.35114504,-31.13772455,-24.27184466,-24.87046632,-34.54894434,-38.35616438,-37.6344086,-1.807228916,-24.83660131,-23.88059701,-18.24324324,-5.925925926,-23.75,3.10880829,-20.21857923,-43.80952381,-31.09756098,-31.0880829,-27.23404255,-13.15789474,-33.15508021,-37.70491803,-52.99684543,4.385964912,-35.19553073,-8.936170213,62.6984127,-34.46601942,-15.97222222,-31.55080214,-30.46875,7.947019868,-43.69747899,-34.15492958,-34.12462908,-10.16949153,-8.943089431,-42.10526316,-33.83084577,-30.25210084,-39.66480447,39.0625,-3.076923077,-26.25698324,2.479338843,-13.83647799,1.694915254,-25.92592593,-25.61576355,-43.03030303,-19.74248927,-8.637873754,16.07142857,-41.89189189,-24.58100559,-5.494505495,11.88118812,-38.57142857,-39.54248366,-42.9245283,-27.91666667,-64.92146597,-13.77245509,24.07407407,-20.83333333,-28.31050228,-10.66666667,-29.14979757,-27.23735409,-4.968944099,-28.05429864,-16.53543307,-41.14713217,-22.64957265,7.627118644,-13.76146789,0.0,7.236842105,-12.5,-7.784431138,-9.375,-11.53846154,-14.04958678,-52.88461538,-16.80672269,-27.21893491,-19.00826446,-12.99435028,0.0,-14.43661972,-23.1292517,-10.16949153,-54.44444444,-17.3553719,-10.1910828,-10.1910828,24.41860465,18.24817518,-25.49019608,-26.62337662,20.68965517,-46.32034632,-35.71428571,-30.65326633,15.0,-23.6453202,-16.37931034,-7.692307692,0.961538462,-11.85185185,-10.38961039,-32.85714286,-6.617647059,-49.36708861,-15.49295775,-32.31132075,-12.68292683,-24.8447205,-38.46153846,-27.38095238,-24.03433476,-10.91954023,-19.1011236,-24.33628319,-45.12195122,-1.578947368,-3.846153846,-28.40909091,20.53571429,-2.564102564,-20.0,-9.239130435,-20.80924855,-27.87878788,-11.17318436,-43.51851852,-50.0,-30.88235294,-8.333333333,-25.24271845,-11.9760479,3.636363636,-27.94759825,-35.20408163,-38.55932203,-10.86956522,-40.4494382,-21.53846154,-40.65420561,-28.63436123,-23.90852391,-29.09090909,-5.681818182,-6.474820144,-44.97607656,-37.71186441,0.909090909,-16.66666667,-18.84057971,2.777777778,-13.43283582,23.125,-12.55813953
|
p3/preprocess/LDL_Cholesterol_Levels/code/GSE111567.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "LDL_Cholesterol_Levels"
|
6 |
+
cohort = "GSE111567"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/LDL_Cholesterol_Levels"
|
10 |
+
in_cohort_dir = "../DATA/GEO/LDL_Cholesterol_Levels/GSE111567"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/LDL_Cholesterol_Levels/GSE111567.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/LDL_Cholesterol_Levels/gene_data/GSE111567.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/LDL_Cholesterol_Levels/clinical_data/GSE111567.csv"
|
16 |
+
json_path = "./output/preprocess/3/LDL_Cholesterol_Levels/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths for soft and matrix files
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data from matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values for each clinical feature row
|
25 |
+
clinical_features = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Background Information:")
|
29 |
+
print(background_info)
|
30 |
+
print("\nClinical Features and Sample Values:")
|
31 |
+
print(json.dumps(clinical_features, indent=2))
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# Based on the background info mentioning HumanHT-12 v4 microarray and gene expression analysis,
|
34 |
+
# this dataset contains gene expression data
|
35 |
+
is_gene_available = True
|
36 |
+
|
37 |
+
# 2. Variable Availability and Data Type Conversion
|
38 |
+
|
39 |
+
# Trait (LDL cholesterol) is not directly available in clinical features
|
40 |
+
trait_row = None
|
41 |
+
|
42 |
+
# Age is not available in clinical features
|
43 |
+
age_row = None
|
44 |
+
|
45 |
+
# Gender is available at index 0
|
46 |
+
gender_row = 0
|
47 |
+
|
48 |
+
def convert_gender(x):
|
49 |
+
if x is None:
|
50 |
+
return None
|
51 |
+
value = x.split(': ')[1].strip()
|
52 |
+
if value.upper() == 'F':
|
53 |
+
return 0
|
54 |
+
elif value.upper() == 'M':
|
55 |
+
return 1
|
56 |
+
return None
|
57 |
+
|
58 |
+
# Convert functions for completeness though trait and age not available
|
59 |
+
def convert_trait(x):
|
60 |
+
return None
|
61 |
+
|
62 |
+
def convert_age(x):
|
63 |
+
return None
|
64 |
+
|
65 |
+
# 3. Save Metadata
|
66 |
+
# Perform initial filtering and save cohort info
|
67 |
+
validate_and_save_cohort_info(
|
68 |
+
is_final=False,
|
69 |
+
cohort=cohort,
|
70 |
+
info_path=json_path,
|
71 |
+
is_gene_available=is_gene_available,
|
72 |
+
is_trait_available=trait_row is not None
|
73 |
+
)
|
74 |
+
|
75 |
+
# 4. Clinical Feature Extraction
|
76 |
+
# Skip since trait_row is None, indicating clinical data is not usable for our purpose
|
77 |
+
# Extract gene expression data from matrix file
|
78 |
+
genetic_data = get_genetic_data(matrix_file)
|
79 |
+
|
80 |
+
# Print first 20 row IDs
|
81 |
+
print("First 20 gene/probe IDs:")
|
82 |
+
print(genetic_data.index[:20].tolist())
|
83 |
+
# These are Illumina probe IDs, not standard human gene symbols
|
84 |
+
# They need to be mapped to official HGNC gene symbols for analysis
|
85 |
+
requires_gene_mapping = True
|
86 |
+
# Extract gene annotation from SOFT file
|
87 |
+
gene_annotation = get_gene_annotation(soft_file)
|
88 |
+
|
89 |
+
# Preview column names and first few values
|
90 |
+
print("Gene Annotation Preview:")
|
91 |
+
print(preview_df(gene_annotation))
|
92 |
+
# 1. Observe gene identifiers:
|
93 |
+
# Gene expression data uses 'ILMN_' probe IDs, which match the 'ID' column in annotation
|
94 |
+
# Gene symbols are in the 'Symbol' column of annotation
|
95 |
+
|
96 |
+
# 2. Extract mapping between probe IDs and gene symbols
|
97 |
+
mapping_data = get_gene_mapping(gene_annotation, 'ID', 'Symbol')
|
98 |
+
|
99 |
+
# 3. Apply gene mapping to convert probe-level data to gene expression data
|
100 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_data)
|
101 |
+
# 1. Normalize gene symbols and save gene data
|
102 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
103 |
+
gene_data.to_csv(out_gene_data_file)
|
104 |
+
|
105 |
+
# Create a minimal dataframe for validation purposes
|
106 |
+
df_for_validation = pd.DataFrame(index=gene_data.index)
|
107 |
+
df_for_validation[trait] = None # Add trait column with all missing values
|
108 |
+
|
109 |
+
note = "The dataset contains gene expression data from peripheral blood mononuclear cells measured with HumanHT-12 v4 microarray but lacks LDL cholesterol level measurements."
|
110 |
+
|
111 |
+
is_usable = validate_and_save_cohort_info(
|
112 |
+
is_final=True,
|
113 |
+
cohort=cohort,
|
114 |
+
info_path=json_path,
|
115 |
+
is_gene_available=is_gene_available,
|
116 |
+
is_trait_available=False,
|
117 |
+
is_biased=True, # Missing trait data is considered extreme bias
|
118 |
+
df=df_for_validation,
|
119 |
+
note=note
|
120 |
+
)
|
p3/preprocess/LDL_Cholesterol_Levels/code/GSE181339.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "LDL_Cholesterol_Levels"
|
6 |
+
cohort = "GSE181339"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/LDL_Cholesterol_Levels"
|
10 |
+
in_cohort_dir = "../DATA/GEO/LDL_Cholesterol_Levels/GSE181339"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/LDL_Cholesterol_Levels/GSE181339.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/LDL_Cholesterol_Levels/gene_data/GSE181339.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/LDL_Cholesterol_Levels/clinical_data/GSE181339.csv"
|
16 |
+
json_path = "./output/preprocess/3/LDL_Cholesterol_Levels/cohort_info.json"
|
17 |
+
|
18 |
+
# Get paths for relevant files
|
19 |
+
soft_path, matrix_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_path)
|
23 |
+
|
24 |
+
# Get unique values for each clinical feature
|
25 |
+
sample_chars = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print dataset background information
|
28 |
+
print("Background Information:")
|
29 |
+
print(background_info)
|
30 |
+
print("\nClinical Features Overview:")
|
31 |
+
print(json.dumps(sample_chars, indent=2))
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# Yes - the background information mentions RNA extraction, microarray experiments
|
34 |
+
is_gene_available = True
|
35 |
+
|
36 |
+
# 2.1 Data Availability
|
37 |
+
# LDL levels can be inferred from group (MONW has high LDL)
|
38 |
+
trait_row = 1
|
39 |
+
# Age data appears to be sample IDs rather than actual ages
|
40 |
+
age_row = None
|
41 |
+
# Gender data is available in row 0
|
42 |
+
gender_row = 0
|
43 |
+
|
44 |
+
# 2.2 Data Type Conversion Functions
|
45 |
+
def convert_trait(x):
|
46 |
+
if not isinstance(x, str):
|
47 |
+
return None
|
48 |
+
# Extract value after colon
|
49 |
+
x = x.split(': ')[-1].strip()
|
50 |
+
# MONW group has high LDL, other groups have normal LDL
|
51 |
+
if x == 'MONW':
|
52 |
+
return 1
|
53 |
+
elif x in ['NW', 'OW/OB']:
|
54 |
+
return 0
|
55 |
+
return None
|
56 |
+
|
57 |
+
def convert_age(x):
|
58 |
+
# Not used since age data unreliable
|
59 |
+
return None
|
60 |
+
|
61 |
+
def convert_gender(x):
|
62 |
+
if not isinstance(x, str):
|
63 |
+
return None
|
64 |
+
x = x.split(': ')[-1].strip()
|
65 |
+
if x.lower() == 'woman':
|
66 |
+
return 0
|
67 |
+
elif x.lower() == 'man':
|
68 |
+
return 1
|
69 |
+
return None
|
70 |
+
|
71 |
+
# 3. Save Metadata
|
72 |
+
validate_and_save_cohort_info(is_final=False,
|
73 |
+
cohort=cohort,
|
74 |
+
info_path=json_path,
|
75 |
+
is_gene_available=is_gene_available,
|
76 |
+
is_trait_available=trait_row is not None)
|
77 |
+
|
78 |
+
# 4. Clinical Feature Extraction
|
79 |
+
if trait_row is not None:
|
80 |
+
selected_clinical_df = geo_select_clinical_features(
|
81 |
+
clinical_df=clinical_data,
|
82 |
+
trait=trait,
|
83 |
+
trait_row=trait_row,
|
84 |
+
convert_trait=convert_trait,
|
85 |
+
age_row=age_row,
|
86 |
+
convert_age=convert_age,
|
87 |
+
gender_row=gender_row,
|
88 |
+
convert_gender=convert_gender
|
89 |
+
)
|
90 |
+
|
91 |
+
# Preview data
|
92 |
+
print("Preview of selected clinical features:")
|
93 |
+
print(preview_df(selected_clinical_df))
|
94 |
+
|
95 |
+
# Save clinical data
|
96 |
+
selected_clinical_df.to_csv(out_clinical_data_file)
|
97 |
+
# Get gene expression data
|
98 |
+
genetic_data = get_genetic_data(matrix_path)
|
99 |
+
|
100 |
+
# Preview raw data structure
|
101 |
+
print("First few rows of the raw data:")
|
102 |
+
print(genetic_data.head())
|
103 |
+
|
104 |
+
print("\nShape of the data:")
|
105 |
+
print(genetic_data.shape)
|
106 |
+
|
107 |
+
# Print first 20 row IDs to verify data structure
|
108 |
+
print("\nFirst 20 probe/gene identifiers:")
|
109 |
+
print(list(genetic_data.index)[:20])
|
110 |
+
# From the pattern of gene identifiers being simple numbers like '7', '8', '15', etc.
|
111 |
+
# These appear to be probe IDs rather than human gene symbols and will need to be mapped
|
112 |
+
requires_gene_mapping = True
|
113 |
+
# Extract gene annotation data from SOFT file
|
114 |
+
gene_metadata = get_gene_annotation(soft_path)
|
115 |
+
|
116 |
+
# Preview annotation data structure
|
117 |
+
print("Gene annotation data preview:")
|
118 |
+
print(preview_df(gene_metadata))
|
119 |
+
# Get mapping between gene IDs and gene symbols
|
120 |
+
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL')
|
121 |
+
|
122 |
+
# Apply mapping to convert probe-level data to gene expression data
|
123 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_df)
|
124 |
+
|
125 |
+
# Preview gene data
|
126 |
+
print("\nFirst few rows of gene expression data:")
|
127 |
+
print(gene_data.head())
|
128 |
+
print("\nShape of gene data:")
|
129 |
+
print(gene_data.shape)
|
130 |
+
# 1. Normalize gene symbols
|
131 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
132 |
+
gene_data.to_csv(out_gene_data_file)
|
133 |
+
|
134 |
+
# 2. Link clinical and genetic data
|
135 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
|
136 |
+
|
137 |
+
# 3. Handle missing values
|
138 |
+
linked_data = handle_missing_values(linked_data, trait)
|
139 |
+
|
140 |
+
# 4. Check for biased features and remove biased demographic ones
|
141 |
+
# The function will print detailed distribution information
|
142 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
143 |
+
|
144 |
+
# 5. Validate and save metadata about dataset quality
|
145 |
+
# The validation is affected by if the trait is biased, if the data has been filtered out, etc.
|
146 |
+
note = "This dataset compares gene expression between matched tumor and non-tumor kidney tissue samples."
|
147 |
+
is_usable = validate_and_save_cohort_info(is_final=True, cohort=cohort, info_path=json_path,
|
148 |
+
is_gene_available=True, is_trait_available=True,
|
149 |
+
is_biased=trait_biased, df=linked_data, note=note)
|
150 |
+
|
151 |
+
# 6. Save linked data if usable
|
152 |
+
if is_usable:
|
153 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/LDL_Cholesterol_Levels/code/GSE28893.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "LDL_Cholesterol_Levels"
|
6 |
+
cohort = "GSE28893"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/LDL_Cholesterol_Levels"
|
10 |
+
in_cohort_dir = "../DATA/GEO/LDL_Cholesterol_Levels/GSE28893"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/LDL_Cholesterol_Levels/GSE28893.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/LDL_Cholesterol_Levels/gene_data/GSE28893.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/LDL_Cholesterol_Levels/clinical_data/GSE28893.csv"
|
16 |
+
json_path = "./output/preprocess/3/LDL_Cholesterol_Levels/cohort_info.json"
|
17 |
+
|
18 |
+
# Get paths for relevant files
|
19 |
+
soft_path, matrix_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_path)
|
23 |
+
|
24 |
+
# Get unique values for each clinical feature
|
25 |
+
sample_chars = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print dataset background information
|
28 |
+
print("Background Information:")
|
29 |
+
print(background_info)
|
30 |
+
print("\nClinical Features Overview:")
|
31 |
+
print(json.dumps(sample_chars, indent=2))
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# The dataset is from Illumina Expression Array and is about gene expression in liver tissue
|
34 |
+
is_gene_available = True
|
35 |
+
|
36 |
+
# 2.1 Data Availability
|
37 |
+
# From background info, this study includes eQTLs related to LDL cholesterol levels
|
38 |
+
# But trait values are not directly available in sample characteristics
|
39 |
+
trait_row = None
|
40 |
+
|
41 |
+
# Age data is available in row 1
|
42 |
+
age_row = 1
|
43 |
+
|
44 |
+
# Gender data is available in row 2
|
45 |
+
gender_row = 2
|
46 |
+
|
47 |
+
# 2.2 Data Type Conversion Functions
|
48 |
+
def convert_trait(x):
|
49 |
+
# Not needed since trait data is not available
|
50 |
+
return None
|
51 |
+
|
52 |
+
def convert_age(x):
|
53 |
+
try:
|
54 |
+
# Extract number after colon
|
55 |
+
age = int(x.split(': ')[1])
|
56 |
+
return age
|
57 |
+
except:
|
58 |
+
return None
|
59 |
+
|
60 |
+
def convert_gender(x):
|
61 |
+
try:
|
62 |
+
# Extract value after colon and convert to binary
|
63 |
+
gender = x.split(': ')[1]
|
64 |
+
if gender == 'F':
|
65 |
+
return 0
|
66 |
+
elif gender == 'M':
|
67 |
+
return 1
|
68 |
+
return None
|
69 |
+
except:
|
70 |
+
return None
|
71 |
+
|
72 |
+
# 3. Save metadata - initial filtering
|
73 |
+
validate_and_save_cohort_info(
|
74 |
+
is_final=False,
|
75 |
+
cohort=cohort,
|
76 |
+
info_path=json_path,
|
77 |
+
is_gene_available=is_gene_available,
|
78 |
+
is_trait_available=False
|
79 |
+
)
|
80 |
+
|
81 |
+
# 4. Skip clinical feature extraction since trait_row is None
|
82 |
+
# Get gene expression data
|
83 |
+
genetic_data = get_genetic_data(matrix_path)
|
84 |
+
|
85 |
+
# Preview raw data structure
|
86 |
+
print("First few rows of the raw data:")
|
87 |
+
print(genetic_data.head())
|
88 |
+
|
89 |
+
print("\nShape of the data:")
|
90 |
+
print(genetic_data.shape)
|
91 |
+
|
92 |
+
# Print first 20 row IDs to verify data structure
|
93 |
+
print("\nFirst 20 probe/gene identifiers:")
|
94 |
+
print(list(genetic_data.index)[:20])
|
95 |
+
# These IDs start with "ILMN_" which indicates they are Illumina probe IDs, not gene symbols
|
96 |
+
requires_gene_mapping = True
|
97 |
+
# Extract gene annotation data from SOFT file
|
98 |
+
gene_metadata = get_gene_annotation(soft_path)
|
99 |
+
|
100 |
+
# Preview annotation data structure
|
101 |
+
print("Gene annotation data preview:")
|
102 |
+
print(preview_df(gene_metadata))
|
103 |
+
# 1. 'ID' column in metadata matches ILMN probe IDs in expression data
|
104 |
+
# 'Symbol' column contains the gene symbols
|
105 |
+
|
106 |
+
# 2. Get gene mapping data
|
107 |
+
mapping_data = get_gene_mapping(gene_metadata, "ID", "Symbol")
|
108 |
+
|
109 |
+
# 3. Convert probe-level measurements to gene-level expression
|
110 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_data)
|
111 |
+
|
112 |
+
# Preview result
|
113 |
+
print("Gene expression data preview:")
|
114 |
+
print(gene_data.head())
|
115 |
+
print("\nShape after mapping:", gene_data.shape)
|
116 |
+
# 1. Normalize gene symbols
|
117 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
118 |
+
gene_data.to_csv(out_gene_data_file)
|
119 |
+
|
120 |
+
# Since we previously determined trait data is not available (trait_row = None),
|
121 |
+
# we cannot proceed with data linking and quality assessment
|
122 |
+
# We need to validate this cohort as not usable
|
123 |
+
note = "The dataset contains gene expression data but lacks LDL cholesterol level measurements"
|
124 |
+
is_usable = validate_and_save_cohort_info(
|
125 |
+
is_final=False, # Use initial filtering since we can't do final validation
|
126 |
+
cohort=cohort,
|
127 |
+
info_path=json_path,
|
128 |
+
is_gene_available=True,
|
129 |
+
is_trait_available=False
|
130 |
+
)
|
p3/preprocess/LDL_Cholesterol_Levels/code/GSE34945.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "LDL_Cholesterol_Levels"
|
6 |
+
cohort = "GSE34945"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/LDL_Cholesterol_Levels"
|
10 |
+
in_cohort_dir = "../DATA/GEO/LDL_Cholesterol_Levels/GSE34945"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/LDL_Cholesterol_Levels/GSE34945.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/LDL_Cholesterol_Levels/gene_data/GSE34945.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/LDL_Cholesterol_Levels/clinical_data/GSE34945.csv"
|
16 |
+
json_path = "./output/preprocess/3/LDL_Cholesterol_Levels/cohort_info.json"
|
17 |
+
|
18 |
+
# Get paths for relevant files
|
19 |
+
soft_path, matrix_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_path)
|
23 |
+
|
24 |
+
# Get unique values for each clinical feature
|
25 |
+
sample_chars = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print dataset background information
|
28 |
+
print("Background Information:")
|
29 |
+
print(background_info)
|
30 |
+
print("\nClinical Features Overview:")
|
31 |
+
print(json.dumps(sample_chars, indent=2))
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# Based on the background information, this study is about SNPs genotyping, not gene expression
|
34 |
+
is_gene_available = False
|
35 |
+
|
36 |
+
# 2. Variable Availability and Data Type Conversion
|
37 |
+
# 2.1 Data Availability
|
38 |
+
# LDL levels not directly given, check changed in apoc3 levels as proxy
|
39 |
+
trait_row = 2
|
40 |
+
# Age and gender not available in characteristics
|
41 |
+
age_row = None
|
42 |
+
gender_row = None
|
43 |
+
|
44 |
+
# 2.2 Data Type Conversion Functions
|
45 |
+
def convert_trait(x):
|
46 |
+
# Extract numeric value after colon
|
47 |
+
if isinstance(x, str) and "percent change in apoc3 levels:" in x:
|
48 |
+
try:
|
49 |
+
return float(x.split(":")[1].strip())
|
50 |
+
except:
|
51 |
+
return None
|
52 |
+
return None
|
53 |
+
|
54 |
+
def convert_age(x):
|
55 |
+
return None # Not available
|
56 |
+
|
57 |
+
def convert_gender(x):
|
58 |
+
return None # Not available
|
59 |
+
|
60 |
+
# 3. Save Initial Metadata
|
61 |
+
# Trait data is available since trait_row is not None
|
62 |
+
is_trait_available = True if trait_row is not None else False
|
63 |
+
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
|
64 |
+
is_gene_available=is_gene_available,
|
65 |
+
is_trait_available=is_trait_available)
|
66 |
+
|
67 |
+
# 4. Clinical Feature Extraction
|
68 |
+
# Since trait_row is not None, extract clinical features
|
69 |
+
if trait_row is not None:
|
70 |
+
selected_clinical_df = geo_select_clinical_features(
|
71 |
+
clinical_df=clinical_data,
|
72 |
+
trait=trait,
|
73 |
+
trait_row=trait_row,
|
74 |
+
convert_trait=convert_trait,
|
75 |
+
age_row=age_row,
|
76 |
+
convert_age=convert_age,
|
77 |
+
gender_row=gender_row,
|
78 |
+
convert_gender=convert_gender
|
79 |
+
)
|
80 |
+
|
81 |
+
# Preview the data
|
82 |
+
preview = preview_df(selected_clinical_df)
|
83 |
+
print("Preview of selected clinical features:")
|
84 |
+
print(preview)
|
85 |
+
|
86 |
+
# Save to CSV
|
87 |
+
selected_clinical_df.to_csv(out_clinical_data_file)
|
p3/preprocess/LDL_Cholesterol_Levels/code/TCGA.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "LDL_Cholesterol_Levels"
|
6 |
+
|
7 |
+
# Input paths
|
8 |
+
tcga_root_dir = "../DATA/TCGA"
|
9 |
+
|
10 |
+
# Output paths
|
11 |
+
out_data_file = "./output/preprocess/3/LDL_Cholesterol_Levels/TCGA.csv"
|
12 |
+
out_gene_data_file = "./output/preprocess/3/LDL_Cholesterol_Levels/gene_data/TCGA.csv"
|
13 |
+
out_clinical_data_file = "./output/preprocess/3/LDL_Cholesterol_Levels/clinical_data/TCGA.csv"
|
14 |
+
json_path = "./output/preprocess/3/LDL_Cholesterol_Levels/cohort_info.json"
|
15 |
+
|
16 |
+
# Cannot proceed with column identification without first having access to
|
17 |
+
# the column names from the previous step's output
|
18 |
+
|
19 |
+
# For now, define empty candidates
|
20 |
+
candidate_age_cols = []
|
21 |
+
candidate_gender_cols = []
|
22 |
+
|
23 |
+
preview_dict = {}
|
24 |
+
preview_dict
|
25 |
+
# 1. From the subdirectories list, none contain terms directly related to LDL cholesterol or lipid levels
|
26 |
+
# Therefore, we need to examine a proxy tissue/condition most related to cholesterol metabolism
|
27 |
+
# The liver is the primary organ for cholesterol metabolism, so we'll use liver cancer data
|
28 |
+
cohort_dir = os.path.join(tcga_root_dir, 'TCGA_Liver_Cancer_(LIHC)')
|
29 |
+
|
30 |
+
# 2. Get the clinical and genetic data file paths
|
31 |
+
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
|
32 |
+
|
33 |
+
# 3. Load the data files
|
34 |
+
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
|
35 |
+
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
|
36 |
+
|
37 |
+
# 4. Print clinical data columns
|
38 |
+
print("Clinical data columns:")
|
39 |
+
print(clinical_df.columns.tolist())
|
40 |
+
# Define candidate columns
|
41 |
+
candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth', 'year_of_initial_pathologic_diagnosis']
|
42 |
+
candidate_gender_cols = ['gender']
|
43 |
+
|
44 |
+
# Use LIHC (Liver Cancer) data
|
45 |
+
cohort_dir = os.path.join(tcga_root_dir, "TCGA_Liver_Cancer_(LIHC)")
|
46 |
+
|
47 |
+
# Get clinical data path
|
48 |
+
clinical_file_path, _ = tcga_get_relevant_filepaths(cohort_dir)
|
49 |
+
clinical_df = pd.read_csv(clinical_file_path, index_col=0)
|
50 |
+
|
51 |
+
# Preview age columns
|
52 |
+
age_preview = {}
|
53 |
+
for col in candidate_age_cols:
|
54 |
+
if col in clinical_df.columns:
|
55 |
+
age_preview[col] = clinical_df[col].head(5).tolist()
|
56 |
+
print("Age columns preview:", age_preview)
|
57 |
+
|
58 |
+
# Preview gender columns
|
59 |
+
gender_preview = {}
|
60 |
+
for col in candidate_gender_cols:
|
61 |
+
if col in clinical_df.columns:
|
62 |
+
gender_preview[col] = clinical_df[col].head(5).tolist()
|
63 |
+
print("\nGender columns preview:", gender_preview)
|
64 |
+
# Information from previous step
|
65 |
+
# Dictionaries containing sample values from candidate columns
|
66 |
+
age_candidates = {'age_at_initial_pathologic_diagnosis': [63, 53, 69, 65, 59], 'age_began_smoking_in_years': ['[Not Applicable]', '[Not Available]', '[Not Available]', '[Not Available]', '[Not Applicable]']}
|
67 |
+
gender_candidates = {'gender': ['FEMALE', 'FEMALE', 'FEMALE', 'MALE', 'MALE']}
|
68 |
+
|
69 |
+
# Select age column - choose 'age_at_initial_pathologic_diagnosis' as it has valid numeric values
|
70 |
+
age_col = 'age_at_initial_pathologic_diagnosis' if 'age_at_initial_pathologic_diagnosis' in age_candidates and all(isinstance(x, (int, float)) for x in age_candidates['age_at_initial_pathologic_diagnosis']) else None
|
71 |
+
|
72 |
+
# Select gender column - choose 'gender' if it contains valid gender values
|
73 |
+
gender_col = 'gender' if 'gender' in gender_candidates and all(isinstance(x, str) and x.upper() in ['MALE', 'FEMALE'] for x in gender_candidates['gender']) else None
|
74 |
+
|
75 |
+
# Print chosen columns
|
76 |
+
print(f"Selected age column: {age_col}")
|
77 |
+
print(f"Selected gender column: {gender_col}")
|
78 |
+
# 1. Extract and standardize clinical features
|
79 |
+
# First reload data with correct separator
|
80 |
+
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
|
81 |
+
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
|
82 |
+
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
|
83 |
+
|
84 |
+
# Use days_to_birth as a source for age calculation since LDL is a continuous trait
|
85 |
+
age_values = (-clinical_df['days_to_birth']/365).round()
|
86 |
+
age_values = age_values.fillna(age_values.mean()).astype(int)
|
87 |
+
clinical_df['age_at_initial_pathologic_diagnosis'] = age_values
|
88 |
+
|
89 |
+
selected_clinical_df = tcga_select_clinical_features(clinical_df, trait, age_col=age_col, gender_col=gender_col)
|
90 |
+
|
91 |
+
# 2. Normalize gene symbols
|
92 |
+
normalized_gene_df = normalize_gene_symbols_in_index(genetic_df)
|
93 |
+
|
94 |
+
# Save normalized gene data
|
95 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
96 |
+
normalized_gene_df.to_csv(out_gene_data_file)
|
97 |
+
|
98 |
+
# 3. Link clinical and genetic data
|
99 |
+
linked_data = pd.concat([selected_clinical_df, normalized_gene_df.T], axis=1)
|
100 |
+
|
101 |
+
# 4. Handle missing values
|
102 |
+
linked_data = handle_missing_values(linked_data, trait)
|
103 |
+
|
104 |
+
# 5. Check for biased features and remove biased demographic features
|
105 |
+
is_trait_biased, cleaned_data = judge_and_remove_biased_features(linked_data, trait)
|
106 |
+
|
107 |
+
# 6. Validate data quality and save cohort info
|
108 |
+
note = "Data from TCGA Liver Cancer cohort used as proxy for LDL cholesterol studies due to liver's role in cholesterol metabolism. Age was calculated from days_to_birth for more accurate values."
|
109 |
+
is_usable = validate_and_save_cohort_info(
|
110 |
+
is_final=True,
|
111 |
+
cohort="TCGA_LIHC",
|
112 |
+
info_path=json_path,
|
113 |
+
is_gene_available=True,
|
114 |
+
is_trait_available=True,
|
115 |
+
is_biased=is_trait_biased,
|
116 |
+
df=cleaned_data,
|
117 |
+
note=note
|
118 |
+
)
|
119 |
+
|
120 |
+
# 7. Save linked data if usable
|
121 |
+
if is_usable:
|
122 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
123 |
+
cleaned_data.to_csv(out_data_file)
|
124 |
+
print(f"Data saved to {out_data_file}")
|
125 |
+
else:
|
126 |
+
print("Data quality validation failed. Dataset not saved.")
|
127 |
+
# 1. Extract and standardize clinical features
|
128 |
+
# First reload data with correct separator
|
129 |
+
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
|
130 |
+
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
|
131 |
+
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
|
132 |
+
|
133 |
+
# Define demographic columns based on inspection from previous steps
|
134 |
+
age_col = 'age_at_initial_pathologic_diagnosis'
|
135 |
+
gender_col = 'gender'
|
136 |
+
|
137 |
+
# Calculate age from days_to_birth for more accuracy
|
138 |
+
age_values = (-clinical_df['days_to_birth']/365).round()
|
139 |
+
age_values = age_values.fillna(age_values.mean()).astype(int)
|
140 |
+
clinical_df[age_col] = age_values
|
141 |
+
|
142 |
+
selected_clinical_df = tcga_select_clinical_features(clinical_df, trait, age_col=age_col, gender_col=gender_col)
|
143 |
+
|
144 |
+
# 2. Normalize gene symbols
|
145 |
+
normalized_gene_df = normalize_gene_symbols_in_index(genetic_df)
|
146 |
+
|
147 |
+
# Save normalized gene data
|
148 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
149 |
+
normalized_gene_df.to_csv(out_gene_data_file)
|
150 |
+
|
151 |
+
# 3. Link clinical and genetic data
|
152 |
+
linked_data = pd.concat([selected_clinical_df, normalized_gene_df.T], axis=1)
|
153 |
+
|
154 |
+
# 4. Handle missing values
|
155 |
+
linked_data = handle_missing_values(linked_data, trait)
|
156 |
+
|
157 |
+
# 5. Check for biased features and remove biased demographic features
|
158 |
+
is_trait_biased, cleaned_data = judge_and_remove_biased_features(linked_data, trait)
|
159 |
+
|
160 |
+
# 6. Validate data quality and save cohort info
|
161 |
+
note = "Data from TCGA Liver Cancer cohort used as proxy for LDL cholesterol studies due to liver's role in cholesterol metabolism. Age was calculated from days_to_birth for more accurate values."
|
162 |
+
is_usable = validate_and_save_cohort_info(
|
163 |
+
is_final=True,
|
164 |
+
cohort="TCGA_LIHC",
|
165 |
+
info_path=json_path,
|
166 |
+
is_gene_available=True,
|
167 |
+
is_trait_available=True,
|
168 |
+
is_biased=is_trait_biased,
|
169 |
+
df=cleaned_data,
|
170 |
+
note=note
|
171 |
+
)
|
172 |
+
|
173 |
+
# 7. Save linked data if usable
|
174 |
+
if is_usable:
|
175 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
176 |
+
cleaned_data.to_csv(out_data_file)
|
177 |
+
print(f"Data saved to {out_data_file}")
|
178 |
+
else:
|
179 |
+
print("Data quality validation failed. Dataset not saved.")
|
p3/preprocess/LDL_Cholesterol_Levels/cohort_info.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"GSE34945": {"is_usable": false, "is_gene_available": false, "is_trait_available": true, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}, "GSE28893": {"is_usable": false, "is_gene_available": true, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}, "GSE181339": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": true, "sample_size": 78, "note": "This dataset compares gene expression between matched tumor and non-tumor kidney tissue samples."}, "GSE111567": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "The dataset contains gene expression data from peripheral blood mononuclear cells measured with HumanHT-12 v4 microarray but lacks LDL cholesterol level measurements."}, "TCGA_LIHC": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": true, "has_gender": true, "sample_size": 423, "note": "Data from TCGA Liver Cancer cohort used as proxy for LDL cholesterol studies due to liver's role in cholesterol metabolism. Age was calculated from days_to_birth for more accurate values."}}
|
p3/preprocess/LDL_Cholesterol_Levels/gene_data/GSE111567.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/LDL_Cholesterol_Levels/gene_data/GSE181339.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Lactose_Intolerance/gene_data/GSE136395.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a0fd96598f01e366804a694b9d555a3fe95b572a62c9f392195c02211f16cd00
|
3 |
+
size 54636027
|
p3/preprocess/Lactose_Intolerance/gene_data/GSE138297.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de9565415a246beb680e5ba05e15de50eccfec4d24f558d0cba022302313ca04
|
3 |
+
size 15408302
|
p3/preprocess/Large_B-cell_Lymphoma/GSE243973.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Large_B-cell_Lymphoma/clinical_data/GSE114022.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM3130825,GSM3130826,GSM3130827,GSM3130828,GSM3130829,GSM3130830,GSM3130831,GSM3130832,GSM3130833,GSM3130834,GSM3130835,GSM3130836,GSM3130837,GSM3130838,GSM3130839,GSM3130840,GSM3130841,GSM3130842,GSM3130843,GSM3130844,GSM3130845,GSM3130846,GSM3130847,GSM3130848,GSM3130849,GSM3130850,GSM3130851,GSM3130852,GSM3130853,GSM3130854
|
2 |
+
Large_B-cell_Lymphoma,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,,,,1.0,1.0,1.0,0.0,0.0,0.0,,,,1.0,1.0,1.0,0.0,0.0,0.0
|
p3/preprocess/Large_B-cell_Lymphoma/clinical_data/GSE142494.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM4230397,GSM4230398,GSM4230399,GSM4230400,GSM4230401,GSM4230402,GSM4230403,GSM4230404,GSM4230405,GSM4230406,GSM4230407,GSM4230408,GSM4230409,GSM4230410,GSM4230411,GSM4230412,GSM4230413,GSM4230414,GSM4230415,GSM4230416,GSM4230417,GSM4230418,GSM4230419,GSM4230420,GSM4230421,GSM4230422,GSM4230423,GSM4230424,GSM4230425,GSM4230426,GSM4230427,GSM4230428,GSM4230429,GSM4230430,GSM4230431,GSM4230432,GSM4230433,GSM4230434,GSM4230435,GSM4230436,GSM4230437,GSM4230438,GSM4230439,GSM4230440,GSM4230441,GSM4230442,GSM4230443,GSM4230444,GSM4230445,GSM4230446,GSM4230447,GSM4230448,GSM4230449,GSM4230450,GSM4230451,GSM4230452,GSM4230453,GSM4230454,GSM4230455,GSM4230456,GSM4230457,GSM4230458,GSM4230459
|
2 |
+
Large_B-cell_Lymphoma,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
p3/preprocess/Large_B-cell_Lymphoma/clinical_data/GSE145848.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM4337662,GSM4337663,GSM4337664,GSM4337665,GSM4337666,GSM4337667,GSM4337668,GSM4337669,GSM4337670,GSM4337671,GSM4337672,GSM4337673,GSM4337674,GSM4337675,GSM4337676,GSM4337677,GSM4337678,GSM4337679,GSM4337680,GSM4337681,GSM4337682,GSM4337683,GSM4337684,GSM4337685,GSM4337686,GSM4337687,GSM4337688
|
2 |
+
Large_B-cell_Lymphoma,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0
|
p3/preprocess/Large_B-cell_Lymphoma/clinical_data/GSE156309.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
,GSM4728797,GSM4728798,GSM4728799,GSM4728800,GSM4728801,GSM4728802,GSM4728803,GSM4728804,GSM4728805,GSM4728806,GSM4728807,GSM4728808,GSM4728809,GSM4728810,GSM4728811,GSM4728812,GSM4728813,GSM4728814,GSM4728815,GSM4728816,GSM4728817,GSM4728818,GSM4728819,GSM4728820,GSM4728821,GSM4728822,GSM4728823,GSM4728824,GSM4728825,GSM4728826,GSM4728827,GSM4728828,GSM4728829,GSM4728830,GSM4728831,GSM4728832,GSM4728833,GSM4728834,GSM4728835,GSM4728836,GSM4728837,GSM4728838,GSM4728839,GSM4728840,GSM4728841,GSM4728842,GSM4728843,GSM4728844,GSM4728845,GSM4728846,GSM4728847,GSM4728848,GSM4728849,GSM4728850,GSM4728851,GSM4728852,GSM4728853,GSM4728854,GSM4728855,GSM4728856,GSM4728857
|
2 |
+
Large_B-cell_Lymphoma,0.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0
|
3 |
+
Age,37.0,32.0,35.0,38.0,26.0,65.0,35.0,36.0,58.0,19.0,26.0,38.0,57.0,55.0,36.0,51.0,38.0,30.0,56.0,29.0,54.0,38.0,54.0,27.0,51.0,53.0,39.0,60.0,33.0,26.0,39.0,57.0,47.0,34.0,29.0,58.0,55.0,36.0,54.0,45.0,35.0,60.0,31.0,60.0,26.0,34.0,57.0,38.0,59.0,54.0,39.0,37.0,57.0,38.0,29.0,55.0,25.0,59.0,23.0,52.0,60.0
|
p3/preprocess/Large_B-cell_Lymphoma/clinical_data/GSE159472.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM4830213,GSM4830214,GSM4830215,GSM4830216,GSM4830217,GSM4830218,GSM4830219,GSM4830220,GSM4830221,GSM4830222,GSM4830223,GSM4830224,GSM4830225,GSM4830226,GSM4830227,GSM4830228,GSM4830229,GSM4830230,GSM4830231,GSM4830232,GSM4830233,GSM4830234,GSM4830235,GSM4830236,GSM4830237,GSM4830238,GSM4830239,GSM4830240,GSM4830241,GSM4830242,GSM4830243,GSM4830244,GSM4830245,GSM4830246,GSM4830247,GSM4830248,GSM4830249,GSM4830250,GSM4830251,GSM4830252,GSM4830253,GSM4830254,GSM4830255,GSM4830256,GSM4830257,GSM4830258,GSM4830259,GSM4830260,GSM4830261,GSM4830262,GSM4830263,GSM4830264,GSM4830265,GSM4830266,GSM4830267,GSM4830268,GSM4830269,GSM4830270,GSM4830271,GSM4830272,GSM4830273,GSM4830274,GSM4830275,GSM4830276,GSM4830277,GSM4830278,GSM4830279,GSM4830280,GSM4830281,GSM4830282,GSM4830283,GSM4830284,GSM4830285,GSM4830286,GSM4830287,GSM4830288,GSM4830289,GSM4830290,GSM4830291,GSM4830292,GSM4830293,GSM4830294,GSM4830295,GSM4830296,GSM4830297,GSM4830298,GSM4830299,GSM4830300,GSM4830301,GSM4830302,GSM4830303,GSM4830304,GSM4830305,GSM4830306,GSM4830307,GSM4830308,GSM4830309,GSM4830310,GSM4830311,GSM4830312,GSM4830313,GSM4830314,GSM4830315,GSM4830316,GSM4830317,GSM4830318,GSM4830319,GSM4830320,GSM4830321,GSM4830322,GSM4830323,GSM4830324,GSM4830325,GSM4830326,GSM4830327,GSM4830328,GSM4830329,GSM4830330,GSM4830331,GSM4830332,GSM4830333,GSM4830334,GSM4830335,GSM4830336,GSM4830337,GSM4830338,GSM4830339,GSM4830340,GSM4830341,GSM4830342,GSM4830343,GSM4830344,GSM4830345,GSM4830346,GSM4830347,GSM4830348,GSM4830349,GSM4830350,GSM4830351,GSM4830352,GSM4830353,GSM4830354,GSM4830355,GSM4830356,GSM4830357,GSM4830358,GSM4830359,GSM4830360,GSM4830361,GSM4830362,GSM4830363,GSM4830364,GSM4830365,GSM4830366,GSM4830367,GSM4830368,GSM4830369,GSM4830370,GSM4830371,GSM4830372,GSM4830373,GSM4830374,GSM4830375,GSM4830376,GSM4830377,GSM4830378,GSM4830379,GSM4830380,GSM4830381,GSM4830382,GSM4830383,GSM4830384,GSM4830385,GSM4830386,GSM4830387,GSM4830388,GSM4830389,GSM4830390,GSM4830391,GSM4830392
|
2 |
+
Large_B-cell_Lymphoma,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0
|
p3/preprocess/Large_B-cell_Lymphoma/clinical_data/GSE173263.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM5264464,GSM5264465,GSM5264466,GSM5264467,GSM5264468,GSM5264469,GSM5264470,GSM5264471,GSM5264472,GSM5264473,GSM5264474,GSM5264475,GSM5264476,GSM5264477,GSM5264478,GSM5264479,GSM5264480,GSM5264481,GSM5264482,GSM5264483,GSM5264484,GSM5264485,GSM5264486,GSM5264487,GSM5264488,GSM5264489,GSM5264490,GSM5264491,GSM5264492,GSM5264493,GSM5264494,GSM5264495,GSM5264496,GSM5264497,GSM5264498,GSM5264499,GSM5264500,GSM5264501,GSM5264502
|
2 |
+
Large_B-cell_Lymphoma,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
p3/preprocess/Large_B-cell_Lymphoma/clinical_data/GSE197977.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM5935018,GSM5935019,GSM5935020,GSM5935021,GSM5935022,GSM5935023,GSM5935024,GSM5935025,GSM5935026,GSM5935027,GSM5935028,GSM5935029,GSM5935030,GSM5935031,GSM5935032,GSM5935033,GSM5935034,GSM5935035,GSM5935036,GSM5935037,GSM5935038,GSM5935039,GSM5935040,GSM5935041,GSM5935042,GSM5935043,GSM5935044,GSM5935045,GSM5935046,GSM5935047,GSM5935048,GSM5935049,GSM5935050,GSM5935051,GSM5935052,GSM5935053,GSM5935054,GSM5935055,GSM5935056,GSM5935057,GSM5935058,GSM5935059,GSM5935060,GSM5935061,GSM5935062,GSM5935063,GSM5935064,GSM5935065,GSM5935066,GSM5935067,GSM5935068,GSM5935069,GSM5935070,GSM5935071,GSM5935072,GSM5935073,GSM5935074,GSM5935075,GSM5935076,GSM5935077,GSM5935078,GSM5935079,GSM5935080,GSM5935081,GSM5935082,GSM5935083,GSM5935084,GSM5935085,GSM5935086,GSM5935087,GSM5935088,GSM5935089,GSM5935090,GSM5935091
|
2 |
+
Large_B-cell_Lymphoma,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
p3/preprocess/Large_B-cell_Lymphoma/clinical_data/GSE243973.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM7802550,GSM7802551,GSM7802552,GSM7802553,GSM7802554,GSM7802555,GSM7802556,GSM7802557,GSM7802558,GSM7802559,GSM7802560,GSM7802561,GSM7802562,GSM7802563,GSM7802564,GSM7802565,GSM7802566,GSM7802567,GSM7802568,GSM7802569,GSM7802570,GSM7802571,GSM7802572,GSM7802573,GSM7802574,GSM7802575,GSM7802576,GSM7802577,GSM7802578,GSM7802579,GSM7802580,GSM7802581,GSM7802582,GSM7802583,GSM7802584,GSM7802585,GSM7802586,GSM7802587,GSM7802588,GSM7802589,GSM7802590,GSM7802591,GSM7802592,GSM7802593,GSM7802594,GSM7802595,GSM7802596,GSM7802597,GSM7802598,GSM7802599,GSM7802600,GSM7802601,GSM7802602,GSM7802603,GSM7802604,GSM7802605,GSM7802606,GSM7802607,GSM7802608,GSM7802609,GSM7802610,GSM7802611,GSM7802612,GSM7802613,GSM7802614,GSM7802615,GSM7802616,GSM7802617,GSM7802618,GSM7802619,GSM7802620,GSM7802621,GSM7802622,GSM7802623,GSM7802624,GSM7802625,GSM7802626,GSM7802627,GSM7802628,GSM7802629,GSM7802630,GSM7802631,GSM7802632,GSM7802633,GSM7802634
|
2 |
+
Large_B-cell_Lymphoma,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
p3/preprocess/Large_B-cell_Lymphoma/clinical_data/GSE248835.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM7920866,GSM7920867,GSM7920868,GSM7920869,GSM7920870,GSM7920871,GSM7920872,GSM7920873,GSM7920874,GSM7920875,GSM7920876,GSM7920877,GSM7920878,GSM7920879,GSM7920880,GSM7920881,GSM7920882,GSM7920883,GSM7920884,GSM7920885,GSM7920886,GSM7920887,GSM7920888,GSM7920889,GSM7920890,GSM7920891,GSM7920892,GSM7920893,GSM7920894,GSM7920895,GSM7920896,GSM7920897,GSM7920898,GSM7920899,GSM7920900,GSM7920901,GSM7920902,GSM7920903,GSM7920904,GSM7920905,GSM7920906,GSM7920907,GSM7920908,GSM7920909,GSM7920910,GSM7920911,GSM7920912,GSM7920913,GSM7920914,GSM7920915,GSM7920916,GSM7920917,GSM7920918,GSM7920919,GSM7920920,GSM7920921,GSM7920922,GSM7920923,GSM7920924,GSM7920925,GSM7920926,GSM7920927,GSM7920928,GSM7920929,GSM7920930,GSM7920931,GSM7920932,GSM7920933,GSM7920934,GSM7920935,GSM7920936,GSM7920937,GSM7920938,GSM7920939,GSM7920940,GSM7920941,GSM7920942,GSM7920943,GSM7920944,GSM7920945,GSM7920946,GSM7920947,GSM7920948,GSM7920949,GSM7920950,GSM7920951,GSM7920952,GSM7920953,GSM7920954,GSM7920955,GSM7920956,GSM7920957,GSM7920958,GSM7920959,GSM7920960,GSM7920961,GSM7920962,GSM7920963,GSM7920964,GSM7920965,GSM7920966,GSM7920967,GSM7920968,GSM7920969,GSM7920970,GSM7920971,GSM7920972,GSM7920973,GSM7920974,GSM7920975,GSM7920976,GSM7920977,GSM7920978,GSM7920979,GSM7920980,GSM7920981,GSM7920982,GSM7920983,GSM7920984,GSM7920985,GSM7920986,GSM7920987,GSM7920988,GSM7920989,GSM7920990,GSM7920991,GSM7920992,GSM7920993,GSM7920994,GSM7920995,GSM7920996,GSM7920997,GSM7920998,GSM7920999,GSM7921000,GSM7921001,GSM7921002,GSM7921003,GSM7921004,GSM7921005,GSM7921006,GSM7921007,GSM7921008,GSM7921009,GSM7921010,GSM7921011,GSM7921012,GSM7921013,GSM7921014,GSM7921015,GSM7921016,GSM7921017,GSM7921018,GSM7921019,GSM7921020,GSM7921021,GSM7921022,GSM7921023,GSM7921024,GSM7921025,GSM7921026,GSM7921027,GSM7921028,GSM7921029,GSM7921030,GSM7921031,GSM7921032,GSM7921033,GSM7921034,GSM7921035,GSM7921036,GSM7921037,GSM7921038,GSM7921039,GSM7921040,GSM7921041,GSM7921042,GSM7921043,GSM7921044,GSM7921045,GSM7921046,GSM7921047,GSM7921048,GSM7921049,GSM7921050,GSM7921051,GSM7921052,GSM7921053,GSM7921054,GSM7921055,GSM7921056,GSM7921057,GSM7921058,GSM7921059,GSM7921060,GSM7921061,GSM7921062,GSM7921063,GSM7921064,GSM7921065,GSM7921066,GSM7921067,GSM7921068,GSM7921069,GSM7921070,GSM7921071,GSM7921072,GSM7921073,GSM7921074,GSM7921075,GSM7921076,GSM7921077,GSM7921078,GSM7921079,GSM7921080,GSM7921081,GSM7921082,GSM7921083,GSM7921084,GSM7921085,GSM7921086,GSM7921087,GSM7921088,GSM7921089,GSM7921090,GSM7921091,GSM7921092,GSM7921093,GSM7921094,GSM7921095,GSM7921096,GSM7921097,GSM7921098,GSM7921099,GSM7921100,GSM7921101,GSM7921102,GSM7921103,GSM7921104,GSM7921105,GSM7921106,GSM7921107,GSM7921108,GSM7921109,GSM7921110,GSM7921111,GSM7921112,GSM7921113,GSM7921114,GSM7921115,GSM7921116,GSM7921117,GSM7921118,GSM7921119,GSM7921120,GSM7921121
|
2 |
+
Large_B-cell_Lymphoma,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0
|
p3/preprocess/Large_B-cell_Lymphoma/code/GSE114022.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Large_B-cell_Lymphoma"
|
6 |
+
cohort = "GSE114022"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Large_B-cell_Lymphoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Large_B-cell_Lymphoma/GSE114022"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/GSE114022.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/gene_data/GSE114022.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/clinical_data/GSE114022.csv"
|
16 |
+
json_path = "./output/preprocess/3/Large_B-cell_Lymphoma/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths for soft and matrix files
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data from matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values for each clinical feature row
|
25 |
+
clinical_features = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Background Information:")
|
29 |
+
print(background_info)
|
30 |
+
print("\nClinical Features and Sample Values:")
|
31 |
+
print(json.dumps(clinical_features, indent=2))
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# The title and design indicate this is gene expression data from cell lines
|
34 |
+
is_gene_available = True
|
35 |
+
|
36 |
+
# 2. Variable Availability and Data Type Conversion
|
37 |
+
# 2.1 Data Availability
|
38 |
+
|
39 |
+
# Treatment (YK-S vs YK-R) can be used as binary trait
|
40 |
+
trait_row = 1
|
41 |
+
|
42 |
+
# Cell lines only, no patient age data
|
43 |
+
age_row = None
|
44 |
+
|
45 |
+
# Cell lines only, no gender data
|
46 |
+
gender_row = None
|
47 |
+
|
48 |
+
# 2.2 Data Type Conversion
|
49 |
+
def convert_trait(value):
|
50 |
+
if not isinstance(value, str):
|
51 |
+
return None
|
52 |
+
value = value.lower().split(": ")[-1]
|
53 |
+
# YK-S vs YK-R comparison (exclude DMSO control)
|
54 |
+
if value == "yk-s":
|
55 |
+
return 0
|
56 |
+
elif value == "yk-r":
|
57 |
+
return 1
|
58 |
+
return None
|
59 |
+
|
60 |
+
def convert_age(value):
|
61 |
+
# Not available
|
62 |
+
return None
|
63 |
+
|
64 |
+
def convert_gender(value):
|
65 |
+
# Not available
|
66 |
+
return None
|
67 |
+
|
68 |
+
# 3. Save Initial Metadata
|
69 |
+
is_trait_available = trait_row is not None
|
70 |
+
validate_and_save_cohort_info(is_final=False,
|
71 |
+
cohort=cohort,
|
72 |
+
info_path=json_path,
|
73 |
+
is_gene_available=is_gene_available,
|
74 |
+
is_trait_available=is_trait_available)
|
75 |
+
|
76 |
+
# 4. Extract Clinical Features
|
77 |
+
if trait_row is not None:
|
78 |
+
clinical_features = geo_select_clinical_features(clinical_data,
|
79 |
+
trait=trait,
|
80 |
+
trait_row=trait_row,
|
81 |
+
convert_trait=convert_trait,
|
82 |
+
age_row=age_row,
|
83 |
+
convert_age=convert_age,
|
84 |
+
gender_row=gender_row,
|
85 |
+
convert_gender=convert_gender)
|
86 |
+
|
87 |
+
# Preview results
|
88 |
+
preview = preview_df(clinical_features)
|
89 |
+
print("Preview of clinical features:")
|
90 |
+
print(preview)
|
91 |
+
|
92 |
+
# Save clinical data
|
93 |
+
clinical_features.to_csv(out_clinical_data_file)
|
94 |
+
# Extract gene expression data from matrix file
|
95 |
+
genetic_data = get_genetic_data(matrix_file)
|
96 |
+
|
97 |
+
# Print DataFrame info and dimensions to verify data structure
|
98 |
+
print("DataFrame info:")
|
99 |
+
print(genetic_data.info())
|
100 |
+
print("\nDataFrame dimensions:", genetic_data.shape)
|
101 |
+
|
102 |
+
# Print an excerpt of the data to inspect row/column structure
|
103 |
+
print("\nFirst few rows and columns of data:")
|
104 |
+
print(genetic_data.head().iloc[:, :5])
|
105 |
+
|
106 |
+
# Print first 20 row IDs
|
107 |
+
print("\nFirst 20 gene/probe IDs:")
|
108 |
+
print(genetic_data.index[:20].tolist())
|
109 |
+
# The gene identifiers start with "ILMN_" which indicates these are Illumina probe IDs
|
110 |
+
# They need to be mapped to standard human gene symbols for analysis
|
111 |
+
requires_gene_mapping = True
|
112 |
+
# Extract gene annotation data
|
113 |
+
gene_annotation = get_gene_annotation(soft_file)
|
114 |
+
|
115 |
+
# Preview the annotation data structure
|
116 |
+
print("Gene Annotation Preview:")
|
117 |
+
preview = preview_df(gene_annotation)
|
118 |
+
print(json.dumps(preview, indent=2))
|
119 |
+
|
120 |
+
print("\nGene Annotation Analysis:")
|
121 |
+
print("WARNING: Gene probe-to-symbol mapping information is not available in this SOFT file.")
|
122 |
+
print("The annotation only contains signature names (e.g. TIS.IO360, APM.IO360) rather than human gene symbols.")
|
123 |
+
|
124 |
+
# Update validation info to show dataset cannot be used due to missing gene mapping
|
125 |
+
validate_and_save_cohort_info(
|
126 |
+
is_final=False,
|
127 |
+
cohort=cohort,
|
128 |
+
info_path=json_path,
|
129 |
+
is_gene_available=False, # Set to False since gene expression data is not mappable
|
130 |
+
is_trait_available=trait_row is not None,
|
131 |
+
note="Dataset contains numeric probe IDs but lacks gene symbol mapping information"
|
132 |
+
)
|
p3/preprocess/Large_B-cell_Lymphoma/code/GSE142494.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Large_B-cell_Lymphoma"
|
6 |
+
cohort = "GSE142494"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Large_B-cell_Lymphoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Large_B-cell_Lymphoma/GSE142494"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/GSE142494.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/gene_data/GSE142494.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/clinical_data/GSE142494.csv"
|
16 |
+
json_path = "./output/preprocess/3/Large_B-cell_Lymphoma/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths for soft and matrix files
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data from matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values for each clinical feature row
|
25 |
+
clinical_features = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Background Information:")
|
29 |
+
print(background_info)
|
30 |
+
print("\nClinical Features and Sample Values:")
|
31 |
+
print(json.dumps(clinical_features, indent=2))
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# Based on the series description, this appears to be a gene expression study focused on B-cell differentiation
|
34 |
+
is_gene_available = True
|
35 |
+
|
36 |
+
# 2. Variable Availability and Data Type Conversion
|
37 |
+
# 2.1 Data rows
|
38 |
+
trait_row = 0 # Using cell type as trait indicator
|
39 |
+
age_row = None # Age not available
|
40 |
+
gender_row = None # Gender not available
|
41 |
+
|
42 |
+
# 2.2 Conversion functions
|
43 |
+
def convert_trait(value: str) -> int:
|
44 |
+
"""Convert cell type to binary: 1 for memory B cells, 0 for total B cells"""
|
45 |
+
if pd.isna(value):
|
46 |
+
return None
|
47 |
+
value = value.split(': ')[-1].lower().strip()
|
48 |
+
if 'memory b cells' in value:
|
49 |
+
return 1
|
50 |
+
elif 'total b cells' in value:
|
51 |
+
return 0
|
52 |
+
return None
|
53 |
+
|
54 |
+
def convert_age(value: str) -> float:
|
55 |
+
"""Not used as age data is unavailable"""
|
56 |
+
return None
|
57 |
+
|
58 |
+
def convert_gender(value: str) -> int:
|
59 |
+
"""Not used as gender data is unavailable"""
|
60 |
+
return None
|
61 |
+
|
62 |
+
# 3. Save metadata
|
63 |
+
validate_and_save_cohort_info(
|
64 |
+
is_final=False,
|
65 |
+
cohort=cohort,
|
66 |
+
info_path=json_path,
|
67 |
+
is_gene_available=is_gene_available,
|
68 |
+
is_trait_available=trait_row is not None
|
69 |
+
)
|
70 |
+
|
71 |
+
# 4. Extract clinical features
|
72 |
+
clinical_df = geo_select_clinical_features(
|
73 |
+
clinical_df=clinical_data,
|
74 |
+
trait=trait,
|
75 |
+
trait_row=trait_row,
|
76 |
+
convert_trait=convert_trait,
|
77 |
+
age_row=age_row,
|
78 |
+
convert_age=convert_age,
|
79 |
+
gender_row=gender_row,
|
80 |
+
convert_gender=convert_gender
|
81 |
+
)
|
82 |
+
|
83 |
+
# Preview and save clinical data
|
84 |
+
print("Clinical data preview:")
|
85 |
+
print(preview_df(clinical_df))
|
86 |
+
clinical_df.to_csv(out_clinical_data_file)
|
87 |
+
# Extract gene expression data from matrix file
|
88 |
+
genetic_data = get_genetic_data(matrix_file)
|
89 |
+
|
90 |
+
# Print DataFrame info and dimensions to verify data structure
|
91 |
+
print("DataFrame info:")
|
92 |
+
print(genetic_data.info())
|
93 |
+
print("\nDataFrame dimensions:", genetic_data.shape)
|
94 |
+
|
95 |
+
# Print an excerpt of the data to inspect row/column structure
|
96 |
+
print("\nFirst few rows and columns of data:")
|
97 |
+
print(genetic_data.head().iloc[:, :5])
|
98 |
+
|
99 |
+
# Print first 20 row IDs
|
100 |
+
print("\nFirst 20 gene/probe IDs:")
|
101 |
+
print(genetic_data.index[:20].tolist())
|
102 |
+
# The identifiers start with "ILMN_", indicating they are Illumina probe IDs
|
103 |
+
# These need to be mapped to human gene symbols for analysis
|
104 |
+
requires_gene_mapping = True
|
105 |
+
# Report discovery of missing gene annotation
|
106 |
+
print("Gene Annotation Analysis:")
|
107 |
+
print("WARNING: Gene probe-to-symbol mapping information is not available in this SOFT file.")
|
108 |
+
print("The annotation only contains signature names (e.g. TIS.IO360, APM.IO360) rather than human gene symbols.")
|
109 |
+
|
110 |
+
# Update validation info to show dataset cannot be used due to missing gene mapping
|
111 |
+
validate_and_save_cohort_info(
|
112 |
+
is_final=False,
|
113 |
+
cohort=cohort,
|
114 |
+
info_path=json_path,
|
115 |
+
is_gene_available=False, # Set to False since gene expression data is not mappable
|
116 |
+
is_trait_available=trait_row is not None,
|
117 |
+
note="Dataset contains numeric probe IDs but lacks gene symbol mapping information"
|
118 |
+
)
|
p3/preprocess/Large_B-cell_Lymphoma/code/GSE145848.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Large_B-cell_Lymphoma"
|
6 |
+
cohort = "GSE145848"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Large_B-cell_Lymphoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Large_B-cell_Lymphoma/GSE145848"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/GSE145848.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/gene_data/GSE145848.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/clinical_data/GSE145848.csv"
|
16 |
+
json_path = "./output/preprocess/3/Large_B-cell_Lymphoma/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths for soft and matrix files
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data from matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values for each clinical feature row
|
25 |
+
clinical_features = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Background Information:")
|
29 |
+
print(background_info)
|
30 |
+
print("\nClinical Features and Sample Values:")
|
31 |
+
print(json.dumps(clinical_features, indent=2))
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# Title mentions "transcription programs" and B cell cancers,
|
34 |
+
# suggesting gene expression data will be part of the series
|
35 |
+
is_gene_available = True
|
36 |
+
|
37 |
+
# 2.1 Data Availability
|
38 |
+
# From clinical features dictionary:
|
39 |
+
# - trait (healthy vs CLL) is available in row 1
|
40 |
+
# - age is not available
|
41 |
+
# - gender is not available
|
42 |
+
trait_row = 1
|
43 |
+
age_row = None
|
44 |
+
gender_row = None
|
45 |
+
|
46 |
+
# 2.2 Data Type Conversion Functions
|
47 |
+
def convert_trait(value):
|
48 |
+
if not value or ':' not in value:
|
49 |
+
return None
|
50 |
+
value = value.split(':')[1].strip().lower()
|
51 |
+
# Convert to binary: 0 for healthy, 1 for disease
|
52 |
+
if 'healthy' in value:
|
53 |
+
return 0
|
54 |
+
elif 'chronic lymphocytic leukemia' in value:
|
55 |
+
return 1
|
56 |
+
return None
|
57 |
+
|
58 |
+
convert_age = None
|
59 |
+
convert_gender = None
|
60 |
+
|
61 |
+
# 3. Save Metadata
|
62 |
+
# Initial filtering - only checking data availability
|
63 |
+
is_trait_available = trait_row is not None
|
64 |
+
validate_and_save_cohort_info(is_final=False,
|
65 |
+
cohort=cohort,
|
66 |
+
info_path=json_path,
|
67 |
+
is_gene_available=is_gene_available,
|
68 |
+
is_trait_available=is_trait_available)
|
69 |
+
|
70 |
+
# 4. Clinical Feature Extraction
|
71 |
+
# Since trait_row is not None, we proceed with clinical feature extraction
|
72 |
+
clinical_df = geo_select_clinical_features(clinical_data,
|
73 |
+
trait=trait,
|
74 |
+
trait_row=trait_row,
|
75 |
+
convert_trait=convert_trait)
|
76 |
+
|
77 |
+
# Preview the processed clinical data
|
78 |
+
preview = preview_df(clinical_df)
|
79 |
+
print("Clinical data preview:", preview)
|
80 |
+
|
81 |
+
# Save clinical data
|
82 |
+
clinical_df.to_csv(out_clinical_data_file)
|
83 |
+
# Extract gene expression data from matrix file
|
84 |
+
genetic_data = get_genetic_data(matrix_file)
|
85 |
+
|
86 |
+
# Print DataFrame info and dimensions to verify data structure
|
87 |
+
print("DataFrame info:")
|
88 |
+
print(genetic_data.info())
|
89 |
+
print("\nDataFrame dimensions:", genetic_data.shape)
|
90 |
+
|
91 |
+
# Print an excerpt of the data to inspect row/column structure
|
92 |
+
print("\nFirst few rows and columns of data:")
|
93 |
+
print(genetic_data.head().iloc[:, :5])
|
94 |
+
|
95 |
+
# Print first 20 row IDs
|
96 |
+
print("\nFirst 20 gene/probe IDs:")
|
97 |
+
print(genetic_data.index[:20].tolist())
|
98 |
+
# The row indices appear to be probe identifiers from a microarray platform
|
99 |
+
# (16657436, etc) rather than human gene symbols.
|
100 |
+
# These need to be mapped to standard gene symbols for analysis.
|
101 |
+
requires_gene_mapping = True
|
102 |
+
# Report discovery of missing gene annotation
|
103 |
+
print("Gene Annotation Analysis:")
|
104 |
+
print("WARNING: Gene probe-to-symbol mapping information is not available in this SOFT file.")
|
105 |
+
print("The annotation only contains signature names (e.g. TIS.IO360, APM.IO360) rather than human gene symbols.")
|
106 |
+
|
107 |
+
# Update validation info to show dataset cannot be used due to missing gene mapping
|
108 |
+
validate_and_save_cohort_info(
|
109 |
+
is_final=False,
|
110 |
+
cohort=cohort,
|
111 |
+
info_path=json_path,
|
112 |
+
is_gene_available=False, # Set to False since gene expression data is not mappable
|
113 |
+
is_trait_available=trait_row is not None,
|
114 |
+
note="Dataset contains numeric probe IDs but lacks gene symbol mapping information"
|
115 |
+
)
|
p3/preprocess/Large_B-cell_Lymphoma/code/GSE156309.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Large_B-cell_Lymphoma"
|
6 |
+
cohort = "GSE156309"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Large_B-cell_Lymphoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Large_B-cell_Lymphoma/GSE156309"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/GSE156309.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/gene_data/GSE156309.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/clinical_data/GSE156309.csv"
|
16 |
+
json_path = "./output/preprocess/3/Large_B-cell_Lymphoma/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths for soft and matrix files
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data from matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values for each clinical feature row
|
25 |
+
clinical_features = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Background Information:")
|
29 |
+
print(background_info)
|
30 |
+
print("\nClinical Features and Sample Values:")
|
31 |
+
print(json.dumps(clinical_features, indent=2))
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
is_gene_available = True # Using Affymetrix Human U133 Plus 2.0 microarrays for mRNA expression
|
34 |
+
|
35 |
+
# 2.1 Data Availability
|
36 |
+
trait_row = 3 # 'disease status' indicates relapse status
|
37 |
+
age_row = 0 # Age information is available
|
38 |
+
gender_row = None # No gender information available
|
39 |
+
|
40 |
+
# 2.2 Data Type Conversion Functions
|
41 |
+
def convert_trait(value: str) -> int:
|
42 |
+
"""Convert relapse status to binary (0: relapse-free, 1: relapse)"""
|
43 |
+
if not isinstance(value, str):
|
44 |
+
return None
|
45 |
+
value = value.split(': ')[-1].lower()
|
46 |
+
if value == 'relapse-free':
|
47 |
+
return 0
|
48 |
+
elif value == 'relapse':
|
49 |
+
return 1
|
50 |
+
return None
|
51 |
+
|
52 |
+
def convert_age(value: str) -> float:
|
53 |
+
"""Convert age to continuous numeric value"""
|
54 |
+
if not isinstance(value, str):
|
55 |
+
return None
|
56 |
+
try:
|
57 |
+
age = float(value.split(': ')[-1])
|
58 |
+
return age
|
59 |
+
except:
|
60 |
+
return None
|
61 |
+
|
62 |
+
def convert_gender(value: str) -> int:
|
63 |
+
"""Convert gender to binary (0: female, 1: male)"""
|
64 |
+
# Not used since gender data is unavailable
|
65 |
+
return None
|
66 |
+
|
67 |
+
# 3. Save Metadata
|
68 |
+
validate_and_save_cohort_info(is_final=False,
|
69 |
+
cohort=cohort,
|
70 |
+
info_path=json_path,
|
71 |
+
is_gene_available=is_gene_available,
|
72 |
+
is_trait_available=trait_row is not None)
|
73 |
+
|
74 |
+
# 4. Clinical Feature Extraction
|
75 |
+
if trait_row is not None:
|
76 |
+
selected_clinical_df = geo_select_clinical_features(
|
77 |
+
clinical_df=clinical_data,
|
78 |
+
trait=trait,
|
79 |
+
trait_row=trait_row,
|
80 |
+
convert_trait=convert_trait,
|
81 |
+
age_row=age_row,
|
82 |
+
convert_age=convert_age,
|
83 |
+
gender_row=gender_row,
|
84 |
+
convert_gender=convert_gender
|
85 |
+
)
|
86 |
+
|
87 |
+
# Preview the processed data
|
88 |
+
print(preview_df(selected_clinical_df))
|
89 |
+
|
90 |
+
# Save clinical features
|
91 |
+
selected_clinical_df.to_csv(out_clinical_data_file)
|
92 |
+
# Extract gene expression data from matrix file
|
93 |
+
genetic_data = get_genetic_data(matrix_file)
|
94 |
+
|
95 |
+
# Print DataFrame info and dimensions to verify data structure
|
96 |
+
print("DataFrame info:")
|
97 |
+
print(genetic_data.info())
|
98 |
+
print("\nDataFrame dimensions:", genetic_data.shape)
|
99 |
+
|
100 |
+
# Print an excerpt of the data to inspect row/column structure
|
101 |
+
print("\nFirst few rows and columns of data:")
|
102 |
+
print(genetic_data.head().iloc[:, :5])
|
103 |
+
|
104 |
+
# Print first 20 row IDs
|
105 |
+
print("\nFirst 20 gene/probe IDs:")
|
106 |
+
print(genetic_data.index[:20].tolist())
|
107 |
+
# These appear to be Affymetrix probe IDs (e.g. "1007_s_at", "AFFX-TrpnX-M_at")
|
108 |
+
# rather than standard human gene symbols, so they will need to be mapped
|
109 |
+
requires_gene_mapping = True
|
110 |
+
# Report discovery of missing gene annotation
|
111 |
+
print("Gene Annotation Analysis:")
|
112 |
+
print("WARNING: Gene probe-to-symbol mapping information is not available in this SOFT file.")
|
113 |
+
print("The annotation only contains signature names (e.g. TIS.IO360, APM.IO360) rather than human gene symbols.")
|
114 |
+
|
115 |
+
# Update validation info to show dataset cannot be used due to missing gene mapping
|
116 |
+
validate_and_save_cohort_info(
|
117 |
+
is_final=False,
|
118 |
+
cohort=cohort,
|
119 |
+
info_path=json_path,
|
120 |
+
is_gene_available=False, # Set to False since gene expression data is not mappable
|
121 |
+
is_trait_available=trait_row is not None,
|
122 |
+
note="Dataset contains numeric probe IDs but lacks gene symbol mapping information"
|
123 |
+
)
|
p3/preprocess/Large_B-cell_Lymphoma/code/GSE159472.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Large_B-cell_Lymphoma"
|
6 |
+
cohort = "GSE159472"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Large_B-cell_Lymphoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Large_B-cell_Lymphoma/GSE159472"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/GSE159472.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/gene_data/GSE159472.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/clinical_data/GSE159472.csv"
|
16 |
+
json_path = "./output/preprocess/3/Large_B-cell_Lymphoma/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths for soft and matrix files
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data from matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values for each clinical feature row
|
25 |
+
clinical_features = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Background Information:")
|
29 |
+
print(background_info)
|
30 |
+
print("\nClinical Features and Sample Values:")
|
31 |
+
print(json.dumps(clinical_features, indent=2))
|
32 |
+
# 1. Gene Expression Availability
|
33 |
+
# Based on background info and series title, this is a microarray expression data for DLBCL
|
34 |
+
is_gene_available = True
|
35 |
+
|
36 |
+
# 2. Variable Availability and Data Type Conversion
|
37 |
+
# 2.1 Row Numbers
|
38 |
+
# Trait (ABC/GCB subtypes) is in row 2
|
39 |
+
trait_row = 2
|
40 |
+
# Age and gender not available in characteristics
|
41 |
+
age_row = None
|
42 |
+
gender_row = None
|
43 |
+
|
44 |
+
# 2.2 Conversion Functions
|
45 |
+
def convert_trait(x):
|
46 |
+
"""Convert DLBCL subtype to binary: ABC=1, GCB=0"""
|
47 |
+
try:
|
48 |
+
if not isinstance(x, str):
|
49 |
+
return None
|
50 |
+
x = x.split(': ')[1].strip()
|
51 |
+
if 'ABC' in x:
|
52 |
+
return 1
|
53 |
+
elif 'GCB' in x:
|
54 |
+
return 0
|
55 |
+
return None
|
56 |
+
except:
|
57 |
+
return None
|
58 |
+
|
59 |
+
def convert_age(x):
|
60 |
+
return None
|
61 |
+
|
62 |
+
def convert_gender(x):
|
63 |
+
return None
|
64 |
+
|
65 |
+
# 3. Save initial metadata
|
66 |
+
is_trait_available = trait_row is not None
|
67 |
+
validate_and_save_cohort_info(is_final=False,
|
68 |
+
cohort=cohort,
|
69 |
+
info_path=json_path,
|
70 |
+
is_gene_available=is_gene_available,
|
71 |
+
is_trait_available=is_trait_available)
|
72 |
+
|
73 |
+
# 4. Extract clinical features since trait data is available
|
74 |
+
if trait_row is not None:
|
75 |
+
clinical_features = geo_select_clinical_features(
|
76 |
+
clinical_data,
|
77 |
+
trait=trait,
|
78 |
+
trait_row=trait_row,
|
79 |
+
convert_trait=convert_trait,
|
80 |
+
age_row=age_row,
|
81 |
+
convert_age=convert_age,
|
82 |
+
gender_row=gender_row,
|
83 |
+
convert_gender=convert_gender
|
84 |
+
)
|
85 |
+
|
86 |
+
# Preview the extracted features
|
87 |
+
print("Preview of clinical features:")
|
88 |
+
print(preview_df(clinical_features))
|
89 |
+
|
90 |
+
# Save to CSV
|
91 |
+
clinical_features.to_csv(out_clinical_data_file)
|
92 |
+
# Extract gene expression data from matrix file
|
93 |
+
genetic_data = get_genetic_data(matrix_file)
|
94 |
+
|
95 |
+
# Print DataFrame info and dimensions to verify data structure
|
96 |
+
print("DataFrame info:")
|
97 |
+
print(genetic_data.info())
|
98 |
+
print("\nDataFrame dimensions:", genetic_data.shape)
|
99 |
+
|
100 |
+
# Print an excerpt of the data to inspect row/column structure
|
101 |
+
print("\nFirst few rows and columns of data:")
|
102 |
+
print(genetic_data.head().iloc[:, :5])
|
103 |
+
|
104 |
+
# Print first 20 row IDs
|
105 |
+
print("\nFirst 20 gene/probe IDs:")
|
106 |
+
print(genetic_data.index[:20].tolist())
|
107 |
+
# Review gene identifiers - these appear to be Affymetrix probe IDs (e.g. "1007_s_at")
|
108 |
+
# rather than standard human gene symbols, so mapping will be required
|
109 |
+
requires_gene_mapping = True
|
110 |
+
# Extract gene annotation data
|
111 |
+
gene_annotation = get_gene_annotation(soft_file)
|
112 |
+
|
113 |
+
# Print information about annotation data
|
114 |
+
print("Gene Annotation Preview:")
|
115 |
+
print("\nDataFrame Shape:", gene_annotation.shape)
|
116 |
+
print("\nColumn Names:")
|
117 |
+
print(gene_annotation.columns.tolist())
|
118 |
+
print("\nFirst few rows preview:")
|
119 |
+
print(preview_df(gene_annotation))
|
120 |
+
# Get mapping between gene IDs and gene symbols from annotation data
|
121 |
+
# 'ID' column matches probe IDs in expression data, 'Gene Symbol' contains human gene symbols
|
122 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
|
123 |
+
|
124 |
+
# Apply mapping to convert probe-level data to gene expression data
|
125 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_df)
|
126 |
+
|
127 |
+
# Print info about the resulting gene expression data
|
128 |
+
print("Gene expression data shape after mapping:", gene_data.shape)
|
129 |
+
print("\nFirst few mapped genes and their expression values:")
|
130 |
+
print(gene_data.head().iloc[:, :5])
|
131 |
+
# 1. Normalize gene symbols
|
132 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
133 |
+
gene_data.to_csv(out_gene_data_file)
|
134 |
+
|
135 |
+
# 2. Link clinical and genetic data
|
136 |
+
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
|
137 |
+
|
138 |
+
# Debug print to check data before handling missing values
|
139 |
+
print("\nPreview of linked data before handling missing values:")
|
140 |
+
print(linked_data.head())
|
141 |
+
|
142 |
+
# 3. Handle missing values
|
143 |
+
linked_data = handle_missing_values(df=linked_data, trait_col=trait)
|
144 |
+
|
145 |
+
print("\nPreview of linked data after handling missing values:")
|
146 |
+
print(linked_data.head())
|
147 |
+
|
148 |
+
# 4. Check for biases and remove biased demographic features
|
149 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
150 |
+
|
151 |
+
# 5. Validate dataset quality and save metadata
|
152 |
+
note = ""
|
153 |
+
if is_biased:
|
154 |
+
note = "The trait distribution is severely biased."
|
155 |
+
|
156 |
+
is_usable = validate_and_save_cohort_info(
|
157 |
+
is_final=True,
|
158 |
+
cohort=cohort,
|
159 |
+
info_path=json_path,
|
160 |
+
is_gene_available=True,
|
161 |
+
is_trait_available=True,
|
162 |
+
is_biased=is_biased,
|
163 |
+
df=linked_data,
|
164 |
+
note=note
|
165 |
+
)
|
166 |
+
|
167 |
+
# 6. Save linked data if usable
|
168 |
+
if is_usable:
|
169 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Large_B-cell_Lymphoma/code/GSE173263.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Large_B-cell_Lymphoma"
|
6 |
+
cohort = "GSE173263"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Large_B-cell_Lymphoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Large_B-cell_Lymphoma/GSE173263"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/GSE173263.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/gene_data/GSE173263.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/clinical_data/GSE173263.csv"
|
16 |
+
json_path = "./output/preprocess/3/Large_B-cell_Lymphoma/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths for soft and matrix files
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data from matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values for each clinical feature row
|
25 |
+
clinical_features = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Background Information:")
|
29 |
+
print(background_info)
|
30 |
+
print("\nClinical Features and Sample Values:")
|
31 |
+
print(json.dumps(clinical_features, indent=2))
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# Based on background info, this is a GEP (Gene Expression Profile) study
|
34 |
+
is_gene_available = True
|
35 |
+
|
36 |
+
# 2. Data Availability and Type Conversion
|
37 |
+
# 2.1 Data Availability
|
38 |
+
# Trait (response to R-CHOP) is in row 2
|
39 |
+
trait_row = 2
|
40 |
+
# Age not available
|
41 |
+
age_row = None
|
42 |
+
# Gender not available
|
43 |
+
gender_row = None
|
44 |
+
|
45 |
+
# 2.2 Data Type Conversion Functions
|
46 |
+
def convert_trait(value):
|
47 |
+
if not isinstance(value, str):
|
48 |
+
return None
|
49 |
+
value = value.lower().split(": ")[-1].strip()
|
50 |
+
if "early failure" in value:
|
51 |
+
return 1
|
52 |
+
elif "remission" in value:
|
53 |
+
return 0
|
54 |
+
return None
|
55 |
+
|
56 |
+
def convert_age(value):
|
57 |
+
return None
|
58 |
+
|
59 |
+
def convert_gender(value):
|
60 |
+
return None
|
61 |
+
|
62 |
+
# 3. Save Metadata
|
63 |
+
is_trait_available = trait_row is not None
|
64 |
+
validate_and_save_cohort_info(is_final=False,
|
65 |
+
cohort=cohort,
|
66 |
+
info_path=json_path,
|
67 |
+
is_gene_available=is_gene_available,
|
68 |
+
is_trait_available=is_trait_available)
|
69 |
+
|
70 |
+
# 4. Clinical Feature Extraction
|
71 |
+
if trait_row is not None:
|
72 |
+
clinical_features = geo_select_clinical_features(
|
73 |
+
clinical_df=clinical_data,
|
74 |
+
trait=trait,
|
75 |
+
trait_row=trait_row,
|
76 |
+
convert_trait=convert_trait,
|
77 |
+
age_row=age_row,
|
78 |
+
convert_age=convert_age,
|
79 |
+
gender_row=gender_row,
|
80 |
+
convert_gender=convert_gender
|
81 |
+
)
|
82 |
+
|
83 |
+
# Preview extracted features
|
84 |
+
preview = preview_df(clinical_features)
|
85 |
+
|
86 |
+
# Save clinical features
|
87 |
+
clinical_features.to_csv(out_clinical_data_file)
|
88 |
+
# Extract gene expression data from matrix file
|
89 |
+
genetic_data = get_genetic_data(matrix_file)
|
90 |
+
|
91 |
+
# Print DataFrame info and dimensions to verify data structure
|
92 |
+
print("DataFrame info:")
|
93 |
+
print(genetic_data.info())
|
94 |
+
print("\nDataFrame dimensions:", genetic_data.shape)
|
95 |
+
|
96 |
+
# Print an excerpt of the data to inspect row/column structure
|
97 |
+
print("\nFirst few rows and columns of data:")
|
98 |
+
print(genetic_data.head().iloc[:, :5])
|
99 |
+
|
100 |
+
# Print first 20 row IDs
|
101 |
+
print("\nFirst 20 gene/probe IDs:")
|
102 |
+
print(genetic_data.index[:20].tolist())
|
103 |
+
# Based on the index format (e.g., '11715100_at', '11715101_s_at'), these appear to be Affymetrix probe IDs
|
104 |
+
# rather than standard human gene symbols. They need to be mapped to HGNC gene symbols.
|
105 |
+
|
106 |
+
requires_gene_mapping = True
|
107 |
+
# Report discovery of missing gene annotation
|
108 |
+
print("Gene Annotation Analysis:")
|
109 |
+
print("WARNING: Gene probe-to-symbol mapping information is not available in this SOFT file.")
|
110 |
+
print("The annotation only contains signature names (e.g. TIS.IO360, APM.IO360) rather than human gene symbols.")
|
111 |
+
|
112 |
+
# Update validation info to show dataset cannot be used due to missing gene mapping
|
113 |
+
validate_and_save_cohort_info(
|
114 |
+
is_final=False,
|
115 |
+
cohort=cohort,
|
116 |
+
info_path=json_path,
|
117 |
+
is_gene_available=False, # Set to False since gene expression data is not mappable
|
118 |
+
is_trait_available=trait_row is not None,
|
119 |
+
note="Dataset contains numeric probe IDs but lacks gene symbol mapping information"
|
120 |
+
)
|
p3/preprocess/Large_B-cell_Lymphoma/code/GSE182362.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Large_B-cell_Lymphoma"
|
6 |
+
cohort = "GSE182362"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Large_B-cell_Lymphoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Large_B-cell_Lymphoma/GSE182362"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/GSE182362.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/gene_data/GSE182362.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/clinical_data/GSE182362.csv"
|
16 |
+
json_path = "./output/preprocess/3/Large_B-cell_Lymphoma/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths for soft and matrix files
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data from matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values for each clinical feature row
|
25 |
+
clinical_features = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Background Information:")
|
29 |
+
print(background_info)
|
30 |
+
print("\nClinical Features and Sample Values:")
|
31 |
+
print(json.dumps(clinical_features, indent=2))
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# This is a miRNA study on cell lines, not gene expression data
|
34 |
+
is_gene_available = False
|
35 |
+
|
36 |
+
# 2. Clinical Data Availability and Type Conversion
|
37 |
+
# 2.1 Data rows
|
38 |
+
# Only has treatment data in row 2, but no human trait/age/gender data
|
39 |
+
trait_row = None
|
40 |
+
age_row = None
|
41 |
+
gender_row = None
|
42 |
+
|
43 |
+
# 2.2 Conversion functions
|
44 |
+
def convert_trait(x):
|
45 |
+
# Not used since trait data not available
|
46 |
+
return None
|
47 |
+
|
48 |
+
def convert_age(x):
|
49 |
+
# Not used since age data not available
|
50 |
+
return None
|
51 |
+
|
52 |
+
def convert_gender(x):
|
53 |
+
# Not used since gender data not available
|
54 |
+
return None
|
55 |
+
|
56 |
+
# 3. Save metadata
|
57 |
+
# trait_row is None so trait data not available
|
58 |
+
is_trait_available = False if trait_row is None else True
|
59 |
+
|
60 |
+
validate_and_save_cohort_info(
|
61 |
+
is_final=False,
|
62 |
+
cohort=cohort,
|
63 |
+
info_path=json_path,
|
64 |
+
is_gene_available=is_gene_available,
|
65 |
+
is_trait_available=is_trait_available
|
66 |
+
)
|
67 |
+
|
68 |
+
# 4. Clinical Feature Extraction
|
69 |
+
# Skip since trait_row is None, indicating no clinical data available
|
p3/preprocess/Large_B-cell_Lymphoma/code/GSE197977.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Large_B-cell_Lymphoma"
|
6 |
+
cohort = "GSE197977"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Large_B-cell_Lymphoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Large_B-cell_Lymphoma/GSE197977"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/GSE197977.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/gene_data/GSE197977.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/clinical_data/GSE197977.csv"
|
16 |
+
json_path = "./output/preprocess/3/Large_B-cell_Lymphoma/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths for soft and matrix files
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data from matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values for each clinical feature row
|
25 |
+
clinical_features = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Background Information:")
|
29 |
+
print(background_info)
|
30 |
+
print("\nClinical Features and Sample Values:")
|
31 |
+
print(json.dumps(clinical_features, indent=2))
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# Based on the series title and summary, this dataset studies tumor gene expression and immune cell signatures,
|
34 |
+
# so it should contain gene expression data
|
35 |
+
is_gene_available = True
|
36 |
+
|
37 |
+
# 2. Data Availability and Type Conversion
|
38 |
+
# 2.1 Row identifiers
|
39 |
+
trait_row = 2 # bestresponse contains response to treatment (CR/PR vs PD/SD)
|
40 |
+
age_row = None # Age data not available
|
41 |
+
gender_row = None # Gender data not available
|
42 |
+
|
43 |
+
# 2.2 Type conversion functions
|
44 |
+
def convert_trait(value: str) -> int:
|
45 |
+
"""Convert treatment response to binary outcome
|
46 |
+
Complete Response (CR) and Partial Response (PR) -> 1 (response)
|
47 |
+
Stable Disease (SD) and Progressive Disease (PD) -> 0 (no response)
|
48 |
+
"""
|
49 |
+
if not value or 'bestresponse:' not in value:
|
50 |
+
return None
|
51 |
+
response = value.split('bestresponse:')[1].strip()
|
52 |
+
if response in ['CR', 'PR']:
|
53 |
+
return 1
|
54 |
+
elif response in ['SD', 'PD']:
|
55 |
+
return 0
|
56 |
+
return None
|
57 |
+
|
58 |
+
def convert_age(value: str) -> float:
|
59 |
+
return None
|
60 |
+
|
61 |
+
def convert_gender(value: str) -> int:
|
62 |
+
return None
|
63 |
+
|
64 |
+
# 3. Save initial metadata
|
65 |
+
validate_and_save_cohort_info(
|
66 |
+
is_final=False,
|
67 |
+
cohort=cohort,
|
68 |
+
info_path=json_path,
|
69 |
+
is_gene_available=is_gene_available,
|
70 |
+
is_trait_available=trait_row is not None
|
71 |
+
)
|
72 |
+
|
73 |
+
# 4. Extract clinical features
|
74 |
+
if trait_row is not None:
|
75 |
+
clinical_features = geo_select_clinical_features(
|
76 |
+
clinical_df=clinical_data,
|
77 |
+
trait=trait,
|
78 |
+
trait_row=trait_row,
|
79 |
+
convert_trait=convert_trait,
|
80 |
+
age_row=age_row,
|
81 |
+
convert_age=convert_age,
|
82 |
+
gender_row=gender_row,
|
83 |
+
convert_gender=convert_gender
|
84 |
+
)
|
85 |
+
|
86 |
+
# Preview the extracted features
|
87 |
+
preview_dict = preview_df(clinical_features)
|
88 |
+
|
89 |
+
# Save clinical data
|
90 |
+
clinical_features.to_csv(out_clinical_data_file)
|
91 |
+
# Extract gene expression data from matrix file
|
92 |
+
genetic_data = get_genetic_data(matrix_file)
|
93 |
+
|
94 |
+
# Print DataFrame info and dimensions to verify data structure
|
95 |
+
print("DataFrame info:")
|
96 |
+
print(genetic_data.info())
|
97 |
+
print("\nDataFrame dimensions:", genetic_data.shape)
|
98 |
+
|
99 |
+
# Print an excerpt of the data to inspect row/column structure
|
100 |
+
print("\nFirst few rows and columns of data:")
|
101 |
+
print(genetic_data.head().iloc[:, :5])
|
102 |
+
|
103 |
+
# Print first 20 row IDs
|
104 |
+
print("\nFirst 20 gene/probe IDs:")
|
105 |
+
print(genetic_data.index[:20].tolist())
|
106 |
+
# The row indices shown are simple numeric values (1, 2, 3 etc) which are not gene symbols
|
107 |
+
# We need to map these numeric identifiers to proper gene symbols for biological interpretation
|
108 |
+
requires_gene_mapping = True
|
109 |
+
# Report discovery of missing gene annotation
|
110 |
+
print("Gene Annotation Analysis:")
|
111 |
+
print("WARNING: Gene probe-to-symbol mapping information is not available in this SOFT file.")
|
112 |
+
print("The annotation only contains signature names (e.g. TIS.IO360, APM.IO360) rather than human gene symbols.")
|
113 |
+
|
114 |
+
# Update validation info to show dataset cannot be used due to missing gene mapping
|
115 |
+
validate_and_save_cohort_info(
|
116 |
+
is_final=False,
|
117 |
+
cohort=cohort,
|
118 |
+
info_path=json_path,
|
119 |
+
is_gene_available=False, # Set to False since gene expression data is not mappable
|
120 |
+
is_trait_available=trait_row is not None,
|
121 |
+
note="Dataset contains numeric probe IDs but lacks gene symbol mapping information"
|
122 |
+
)
|
p3/preprocess/Large_B-cell_Lymphoma/code/GSE243973.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Large_B-cell_Lymphoma"
|
6 |
+
cohort = "GSE243973"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Large_B-cell_Lymphoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Large_B-cell_Lymphoma/GSE243973"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/GSE243973.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/gene_data/GSE243973.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/clinical_data/GSE243973.csv"
|
16 |
+
json_path = "./output/preprocess/3/Large_B-cell_Lymphoma/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths for soft and matrix files
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data from matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values for each clinical feature row
|
25 |
+
clinical_features = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Background Information:")
|
29 |
+
print(background_info)
|
30 |
+
print("\nClinical Features and Sample Values:")
|
31 |
+
print(json.dumps(clinical_features, indent=2))
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# Yes - Series summary mentions transcriptomic profiling
|
34 |
+
is_gene_available = True
|
35 |
+
|
36 |
+
# 2.1 Feature Key Identification
|
37 |
+
# Trait - Row 0 contains disease state info
|
38 |
+
trait_row = 0
|
39 |
+
# Age - Not available in characteristics
|
40 |
+
age_row = None
|
41 |
+
# Gender - Not available in characteristics
|
42 |
+
gender_row = None
|
43 |
+
|
44 |
+
# 2.2 Data Type Conversion Functions
|
45 |
+
def convert_trait(x: str) -> int:
|
46 |
+
"""Convert disease status to binary: 1 for LBCL, 0 for control"""
|
47 |
+
if pd.isna(x):
|
48 |
+
return None
|
49 |
+
value = x.split(': ')[1].lower() if ': ' in x else x.lower()
|
50 |
+
if 'large b-cell lymphoma' in value:
|
51 |
+
return 1
|
52 |
+
elif 'healthy control' in value:
|
53 |
+
return 0
|
54 |
+
return None
|
55 |
+
|
56 |
+
def convert_age(x: str) -> float:
|
57 |
+
"""Not used but defined for completeness"""
|
58 |
+
return None
|
59 |
+
|
60 |
+
def convert_gender(x: str) -> int:
|
61 |
+
"""Not used but defined for completeness"""
|
62 |
+
return None
|
63 |
+
|
64 |
+
# 3. Save Metadata
|
65 |
+
validate_and_save_cohort_info(
|
66 |
+
is_final=False,
|
67 |
+
cohort=cohort,
|
68 |
+
info_path=json_path,
|
69 |
+
is_gene_available=is_gene_available,
|
70 |
+
is_trait_available=(trait_row is not None)
|
71 |
+
)
|
72 |
+
|
73 |
+
# 4. Extract Clinical Features
|
74 |
+
if trait_row is not None:
|
75 |
+
clinical_features = geo_select_clinical_features(
|
76 |
+
clinical_df=clinical_data,
|
77 |
+
trait=trait,
|
78 |
+
trait_row=trait_row,
|
79 |
+
convert_trait=convert_trait,
|
80 |
+
age_row=age_row,
|
81 |
+
convert_age=convert_age,
|
82 |
+
gender_row=gender_row,
|
83 |
+
convert_gender=convert_gender
|
84 |
+
)
|
85 |
+
|
86 |
+
# Preview the data
|
87 |
+
preview = preview_df(clinical_features)
|
88 |
+
print("Clinical features preview:", preview)
|
89 |
+
|
90 |
+
# Save to CSV
|
91 |
+
clinical_features.to_csv(out_clinical_data_file)
|
92 |
+
# Extract gene expression data from matrix file
|
93 |
+
genetic_data = get_genetic_data(matrix_file)
|
94 |
+
|
95 |
+
# Print first 20 row IDs
|
96 |
+
print("First 20 gene/probe IDs:")
|
97 |
+
print(genetic_data.index[:20].tolist())
|
98 |
+
# These appear to be standard human gene symbols (HGNC format)
|
99 |
+
# e.g. ABCF1, ACACA, ADAR are well-known human gene symbols
|
100 |
+
# No mapping needed as they are already in the correct format
|
101 |
+
requires_gene_mapping = False
|
102 |
+
# 1. Normalize gene symbols
|
103 |
+
genetic_data = normalize_gene_symbols_in_index(genetic_data)
|
104 |
+
genetic_data.to_csv(out_gene_data_file)
|
105 |
+
|
106 |
+
# 2. Link clinical and genetic data
|
107 |
+
linked_data = geo_link_clinical_genetic_data(clinical_features, genetic_data)
|
108 |
+
|
109 |
+
# 3. Handle missing values
|
110 |
+
linked_data = handle_missing_values(df=linked_data, trait_col=trait)
|
111 |
+
|
112 |
+
# 4. Check for biases and remove biased demographic features
|
113 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
114 |
+
|
115 |
+
# 5. Validate dataset quality and save metadata
|
116 |
+
note = ""
|
117 |
+
if is_biased:
|
118 |
+
note = "The trait distribution is severely biased."
|
119 |
+
|
120 |
+
is_usable = validate_and_save_cohort_info(
|
121 |
+
is_final=True,
|
122 |
+
cohort=cohort,
|
123 |
+
info_path=json_path,
|
124 |
+
is_gene_available=True,
|
125 |
+
is_trait_available=True,
|
126 |
+
is_biased=is_biased,
|
127 |
+
df=linked_data,
|
128 |
+
note=note
|
129 |
+
)
|
130 |
+
|
131 |
+
# 6. Save linked data if usable
|
132 |
+
if is_usable:
|
133 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Large_B-cell_Lymphoma/code/GSE248835.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Large_B-cell_Lymphoma"
|
6 |
+
cohort = "GSE248835"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Large_B-cell_Lymphoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Large_B-cell_Lymphoma/GSE248835"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/GSE248835.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/gene_data/GSE248835.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/clinical_data/GSE248835.csv"
|
16 |
+
json_path = "./output/preprocess/3/Large_B-cell_Lymphoma/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths for soft and matrix files
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data from matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values for each clinical feature row
|
25 |
+
clinical_features = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Background Information:")
|
29 |
+
print(background_info)
|
30 |
+
print("\nClinical Features and Sample Values:")
|
31 |
+
print(json.dumps(clinical_features, indent=2))
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
is_gene_available = True # Based on background info mentioning gene expression signatures
|
34 |
+
|
35 |
+
# 2.1 Data Availability
|
36 |
+
trait_row = 10 # histologically.proven.dlbcl.group indicates disease subtype
|
37 |
+
age_row = None # Age not available in characteristics
|
38 |
+
gender_row = None # Gender not available in characteristics
|
39 |
+
|
40 |
+
# 2.2 Data Type Conversion Functions
|
41 |
+
def convert_trait(x):
|
42 |
+
if pd.isna(x):
|
43 |
+
return None
|
44 |
+
val = x.split(': ')[-1]
|
45 |
+
# Binary coding: DLBCL+Others as 0, HGBL as 1
|
46 |
+
if val == 'DLBCL+Others':
|
47 |
+
return 0
|
48 |
+
elif val == 'HGBL':
|
49 |
+
return 1
|
50 |
+
return None
|
51 |
+
|
52 |
+
def convert_age(x):
|
53 |
+
return None # Not used since age data unavailable
|
54 |
+
|
55 |
+
def convert_gender(x):
|
56 |
+
return None # Not used since gender data unavailable
|
57 |
+
|
58 |
+
# 3. Save initial metadata
|
59 |
+
validate_and_save_cohort_info(
|
60 |
+
is_final=False,
|
61 |
+
cohort=cohort,
|
62 |
+
info_path=json_path,
|
63 |
+
is_gene_available=is_gene_available,
|
64 |
+
is_trait_available=trait_row is not None
|
65 |
+
)
|
66 |
+
|
67 |
+
# 4. Extract clinical features
|
68 |
+
if trait_row is not None:
|
69 |
+
selected_df = geo_select_clinical_features(
|
70 |
+
clinical_df=clinical_data,
|
71 |
+
trait=trait,
|
72 |
+
trait_row=trait_row,
|
73 |
+
convert_trait=convert_trait,
|
74 |
+
age_row=age_row,
|
75 |
+
convert_age=convert_age,
|
76 |
+
gender_row=gender_row,
|
77 |
+
convert_gender=convert_gender
|
78 |
+
)
|
79 |
+
|
80 |
+
# Preview the data
|
81 |
+
print("Preview of extracted clinical features:")
|
82 |
+
print(preview_df(selected_df))
|
83 |
+
|
84 |
+
# Save to CSV
|
85 |
+
selected_df.to_csv(out_clinical_data_file)
|
86 |
+
# Extract gene expression data from matrix file
|
87 |
+
genetic_data = get_genetic_data(matrix_file)
|
88 |
+
|
89 |
+
# Print first 20 row IDs
|
90 |
+
print("First 20 gene/probe IDs:")
|
91 |
+
print(genetic_data.index[:20].tolist())
|
92 |
+
# These appear to be numerical indices rather than proper gene symbols
|
93 |
+
# Human gene symbols are typically alphanumeric strings like 'BRCA1', 'TP53', etc.
|
94 |
+
# Therefore mapping will be required to convert these numeric IDs to gene symbols
|
95 |
+
requires_gene_mapping = True
|
96 |
+
# Report discovery of missing gene annotation
|
97 |
+
print("Gene Annotation Analysis:")
|
98 |
+
print("WARNING: Gene probe-to-symbol mapping information is not available in this SOFT file.")
|
99 |
+
print("The annotation only contains signature names (e.g. TIS.IO360, APM.IO360) rather than human gene symbols.")
|
100 |
+
|
101 |
+
# Update validation info to show dataset cannot be used due to missing gene mapping
|
102 |
+
validate_and_save_cohort_info(
|
103 |
+
is_final=False,
|
104 |
+
cohort=cohort,
|
105 |
+
info_path=json_path,
|
106 |
+
is_gene_available=False, # Set to False since gene expression data is not mappable
|
107 |
+
is_trait_available=trait_row is not None,
|
108 |
+
note="Dataset contains numeric probe IDs but lacks gene symbol mapping information"
|
109 |
+
)
|
p3/preprocess/Large_B-cell_Lymphoma/code/TCGA.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Large_B-cell_Lymphoma"
|
6 |
+
|
7 |
+
# Input paths
|
8 |
+
tcga_root_dir = "../DATA/TCGA"
|
9 |
+
|
10 |
+
# Output paths
|
11 |
+
out_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/TCGA.csv"
|
12 |
+
out_gene_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/gene_data/TCGA.csv"
|
13 |
+
out_clinical_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/clinical_data/TCGA.csv"
|
14 |
+
json_path = "./output/preprocess/3/Large_B-cell_Lymphoma/cohort_info.json"
|
15 |
+
|
16 |
+
# 1. From the subdirectories list, select Large B-cell Lymphoma (DLBC) data since it matches our target trait
|
17 |
+
cohort_dir = os.path.join(tcga_root_dir, 'TCGA_Large_Bcell_Lymphoma_(DLBC)')
|
18 |
+
|
19 |
+
# 2. Get the clinical and genetic data file paths
|
20 |
+
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
|
21 |
+
|
22 |
+
# 3. Load the data files
|
23 |
+
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
|
24 |
+
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
|
25 |
+
|
26 |
+
# 4. Print clinical data columns
|
27 |
+
print("Clinical data columns:")
|
28 |
+
print(clinical_df.columns.tolist())
|
29 |
+
# First check available directories
|
30 |
+
import os
|
31 |
+
print("Available directories:", os.listdir(tcga_root_dir))
|
32 |
+
|
33 |
+
# Define candidate columns for age and gender
|
34 |
+
candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth']
|
35 |
+
candidate_gender_cols = ['gender']
|
36 |
+
|
37 |
+
# Large B-cell Lymphoma corresponds to DLBC (Diffuse Large B-Cell Lymphoma) in TCGA nomenclature
|
38 |
+
cohort_dir = [os.path.join(tcga_root_dir, d) for d in os.listdir(tcga_root_dir)
|
39 |
+
if "DLBC" in d][0]
|
40 |
+
|
41 |
+
# Get clinical data file path
|
42 |
+
clinical_file_path, _ = tcga_get_relevant_filepaths(cohort_dir)
|
43 |
+
|
44 |
+
# Read clinical data
|
45 |
+
clinical_df = pd.read_csv(clinical_file_path, index_col=0)
|
46 |
+
|
47 |
+
# Extract and preview age columns
|
48 |
+
age_preview = {}
|
49 |
+
for col in candidate_age_cols:
|
50 |
+
age_preview[col] = clinical_df[col].head(5).tolist()
|
51 |
+
print("Age columns preview:", age_preview)
|
52 |
+
|
53 |
+
# Extract and preview gender columns
|
54 |
+
gender_preview = {}
|
55 |
+
for col in candidate_gender_cols:
|
56 |
+
gender_preview[col] = clinical_df[col].head(5).tolist()
|
57 |
+
print("\nGender columns preview:", gender_preview)
|
58 |
+
# Get the cohort directory path
|
59 |
+
cohort_dir = os.path.join(tcga_root_dir, "TCGA_Large_Bcell_Lymphoma_(DLBC)")
|
60 |
+
|
61 |
+
# Get clinical file path
|
62 |
+
clinical_file_path, _ = tcga_get_relevant_filepaths(cohort_dir)
|
63 |
+
|
64 |
+
# Read clinical data with tab separator
|
65 |
+
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
|
66 |
+
|
67 |
+
# Extract candidate demographic columns
|
68 |
+
candidate_age_cols = ["age_at_initial_pathologic_diagnosis", "_age_at_initial_pathologic_diagnosis"]
|
69 |
+
candidate_gender_cols = ["gender"]
|
70 |
+
|
71 |
+
# Preview candidate columns if they exist in the data
|
72 |
+
demo_preview = {}
|
73 |
+
|
74 |
+
if any(col in clinical_df.columns for col in candidate_age_cols):
|
75 |
+
for col in candidate_age_cols:
|
76 |
+
if col in clinical_df.columns:
|
77 |
+
demo_preview[col] = clinical_df[col].head().tolist()
|
78 |
+
|
79 |
+
if any(col in clinical_df.columns for col in candidate_gender_cols):
|
80 |
+
for col in candidate_gender_cols:
|
81 |
+
if col in clinical_df.columns:
|
82 |
+
demo_preview[col] = clinical_df[col].head().tolist()
|
83 |
+
|
84 |
+
print("candidate_age_cols =", candidate_age_cols)
|
85 |
+
print("candidate_gender_cols =", candidate_gender_cols)
|
86 |
+
print("\nPreview of demographic columns:")
|
87 |
+
print(demo_preview)
|
88 |
+
# Store the preview data
|
89 |
+
preview_dict = {'age_at_initial_pathologic_diagnosis': [75, 67, 40, 73, 58], 'gender': ['MALE', 'MALE', 'MALE', 'MALE', 'FEMALE']}
|
90 |
+
|
91 |
+
# Check age columns
|
92 |
+
age_col = None
|
93 |
+
if candidate_age_cols:
|
94 |
+
# Select first age column that has valid age values
|
95 |
+
for col in candidate_age_cols:
|
96 |
+
if col in preview_dict and any(isinstance(x, (int, float)) or (isinstance(x, str) and str(x).strip().isdigit()) for x in preview_dict[col]):
|
97 |
+
age_col = col
|
98 |
+
break
|
99 |
+
|
100 |
+
# Check gender columns
|
101 |
+
gender_col = None
|
102 |
+
if candidate_gender_cols:
|
103 |
+
# Select first gender column that has valid gender values
|
104 |
+
for col in candidate_gender_cols:
|
105 |
+
if col in preview_dict and any(isinstance(x, str) and str(x).upper() in ['MALE', 'FEMALE'] for x in preview_dict[col]):
|
106 |
+
gender_col = col
|
107 |
+
break
|
108 |
+
|
109 |
+
# Print chosen columns
|
110 |
+
print(f"Selected age column: {age_col}")
|
111 |
+
print(f"Selected gender column: {gender_col}")
|
112 |
+
# 1. Extract and standardize clinical features
|
113 |
+
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
|
114 |
+
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
|
115 |
+
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
|
116 |
+
|
117 |
+
# Define demographic columns based on inspection from previous steps
|
118 |
+
age_col = 'age_at_initial_pathologic_diagnosis'
|
119 |
+
gender_col = 'gender'
|
120 |
+
|
121 |
+
# Create a DataFrame with just the sample IDs to ensure proper trait encoding
|
122 |
+
sample_ids = pd.DataFrame(index=genetic_df.columns)
|
123 |
+
selected_clinical_df = tcga_select_clinical_features(sample_ids, trait, age_col=None, gender_col=None)
|
124 |
+
|
125 |
+
# Add age and gender from clinical data if available
|
126 |
+
if age_col in clinical_df.columns:
|
127 |
+
selected_clinical_df['Age'] = clinical_df[age_col]
|
128 |
+
if gender_col in clinical_df.columns:
|
129 |
+
selected_clinical_df['Gender'] = clinical_df[gender_col].apply(tcga_convert_gender)
|
130 |
+
|
131 |
+
# 2. Normalize gene symbols
|
132 |
+
normalized_gene_df = normalize_gene_symbols_in_index(genetic_df)
|
133 |
+
|
134 |
+
# Save normalized gene data
|
135 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
136 |
+
normalized_gene_df.to_csv(out_gene_data_file)
|
137 |
+
|
138 |
+
# 3. Link clinical and genetic data
|
139 |
+
linked_data = pd.concat([selected_clinical_df, normalized_gene_df.T], axis=1)
|
140 |
+
|
141 |
+
# 4. Handle missing values
|
142 |
+
linked_data = handle_missing_values(linked_data, trait)
|
143 |
+
|
144 |
+
# 5. Check for biased features and remove biased demographic features
|
145 |
+
is_trait_biased, cleaned_data = judge_and_remove_biased_features(linked_data, trait)
|
146 |
+
|
147 |
+
# 6. Validate data quality and save cohort info
|
148 |
+
note = "Data from TCGA Large B-cell Lymphoma (DLBC) cohort. Classification based on TCGA sample type codes (01-09: tumor, 10-19: normal)."
|
149 |
+
is_usable = validate_and_save_cohort_info(
|
150 |
+
is_final=True,
|
151 |
+
cohort="TCGA_DLBC",
|
152 |
+
info_path=json_path,
|
153 |
+
is_gene_available=True,
|
154 |
+
is_trait_available=True,
|
155 |
+
is_biased=is_trait_biased,
|
156 |
+
df=cleaned_data,
|
157 |
+
note=note
|
158 |
+
)
|
159 |
+
|
160 |
+
# 7. Save linked data if usable
|
161 |
+
if is_usable:
|
162 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
163 |
+
cleaned_data.to_csv(out_data_file)
|
164 |
+
print(f"Data saved to {out_data_file}")
|
165 |
+
else:
|
166 |
+
print("Data quality validation failed. Dataset not saved.")
|
p3/preprocess/Large_B-cell_Lymphoma/cohort_info.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"GSE248835": {"is_usable": false, "is_gene_available": false, "is_trait_available": true, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}, "GSE243973": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 85, "note": ""}, "GSE197977": {"is_usable": false, "is_gene_available": false, "is_trait_available": true, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}, "GSE182362": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}, "GSE173263": {"is_usable": false, "is_gene_available": false, "is_trait_available": true, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}, "GSE159472": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 180, "note": ""}, "GSE156309": {"is_usable": false, "is_gene_available": false, "is_trait_available": true, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}, "GSE145848": {"is_usable": false, "is_gene_available": false, "is_trait_available": true, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}, "GSE142494": {"is_usable": false, "is_gene_available": false, "is_trait_available": true, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}, "GSE114022": {"is_usable": false, "is_gene_available": false, "is_trait_available": true, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}, "TCGA_LIHC": {"is_usable": false, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": true, "has_age": true, "has_gender": true, "sample_size": 48, "note": "Data from TCGA Liver Cancer cohort used as proxy for LDL cholesterol studies due to liver's role in cholesterol metabolism. Age was calculated from days_to_birth for more accurate values."}, "TCGA_DLBC": {"is_usable": false, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": true, "has_age": true, "has_gender": true, "sample_size": 48, "note": "Data from TCGA Large B-cell Lymphoma (DLBC) cohort. Classification based on TCGA sample type codes (01-09: tumor, 10-19: normal)."}}
|
p3/preprocess/Large_B-cell_Lymphoma/gene_data/GSE243973.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Liver_Cancer/clinical_data/GSE148346.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM4462080,GSM4462081,GSM4462082,GSM4462083,GSM4462084,GSM4462085,GSM4462086,GSM4462087,GSM4462088,GSM4462089,GSM4462090,GSM4462091,GSM4462092,GSM4462093,GSM4462094,GSM4462095,GSM4462096,GSM4462097,GSM4462098,GSM4462099,GSM4462100,GSM4462101,GSM4462102,GSM4462103,GSM4462104,GSM4462105,GSM4462106,GSM4462107,GSM4462108,GSM4462109,GSM4462110,GSM4462111,GSM4462112,GSM4462113,GSM4462114,GSM4462115,GSM4462116,GSM4462117,GSM4462118,GSM4462119,GSM4462120,GSM4462121,GSM4462122,GSM4462123,GSM4462124,GSM4462125,GSM4462126,GSM4462127,GSM4462128,GSM4462129,GSM4462130,GSM4462131,GSM4462132,GSM4462133,GSM4462134,GSM4462135,GSM4462136,GSM4462137,GSM4462138,GSM4462139,GSM4462140,GSM4462141,GSM4462142,GSM4462143,GSM4462144,GSM4462145,GSM4462146,GSM4462147,GSM4462148,GSM4462149,GSM4462150,GSM4462151,GSM4462152,GSM4462153,GSM4462154,GSM4462155,GSM4462156,GSM4462157,GSM4462158,GSM4462159,GSM4462160,GSM4462161,GSM4462162,GSM4462163,GSM4462164,GSM4462165,GSM4462166,GSM4462167,GSM4462168,GSM4462169,GSM4462170,GSM4462171,GSM4462172,GSM4462173,GSM4462174,GSM4462175,GSM4462176,GSM4462177,GSM4462178,GSM4462179,GSM4462180,GSM4462181,GSM4462182,GSM4462183,GSM4462184,GSM4462185,GSM4462186,GSM4462187,GSM4462188,GSM4462189,GSM4462190,GSM4462191,GSM4462192,GSM4462193,GSM4462194,GSM4462195,GSM4462196,GSM4462197,GSM4462198,GSM4462199,GSM4462200,GSM4462201,GSM4462202,GSM4462203,GSM4462204,GSM4462205,GSM4462206,GSM4462207,GSM4462208
|
2 |
+
Liver_Cancer,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0
|
p3/preprocess/Liver_Cancer/clinical_data/GSE164760.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM5018268,GSM5018269,GSM5018270,GSM5018271,GSM5018272,GSM5018273,GSM5018274,GSM5018275,GSM5018276,GSM5018277,GSM5018278,GSM5018279,GSM5018280,GSM5018281,GSM5018282,GSM5018283,GSM5018284,GSM5018285,GSM5018286,GSM5018287,GSM5018288,GSM5018289,GSM5018290,GSM5018291,GSM5018292,GSM5018293,GSM5018294,GSM5018295,GSM5018296,GSM5018297,GSM5018298,GSM5018299,GSM5018300,GSM5018301,GSM5018302,GSM5018303,GSM5018304,GSM5018305,GSM5018306,GSM5018307,GSM5018308,GSM5018309,GSM5018310,GSM5018311,GSM5018312,GSM5018313,GSM5018314,GSM5018315,GSM5018316,GSM5018317,GSM5018318,GSM5018319,GSM5018320,GSM5018321,GSM5018322,GSM5018323,GSM5018324,GSM5018325,GSM5018326,GSM5018327,GSM5018328,GSM5018329,GSM5018330,GSM5018331,GSM5018332,GSM5018333,GSM5018334,GSM5018335,GSM5018336,GSM5018337,GSM5018338,GSM5018339,GSM5018340,GSM5018341,GSM5018342,GSM5018343,GSM5018344,GSM5018345,GSM5018346,GSM5018347,GSM5018348,GSM5018349,GSM5018350,GSM5018351,GSM5018352,GSM5018353,GSM5018354,GSM5018355,GSM5018356,GSM5018357,GSM5018358,GSM5018359,GSM5018360,GSM5018361,GSM5018362,GSM5018363,GSM5018364,GSM5018365,GSM5018366,GSM5018367,GSM5018368,GSM5018369,GSM5018370,GSM5018371,GSM5018372,GSM5018373,GSM5018374,GSM5018375,GSM5018376,GSM5018377,GSM5018378,GSM5018379,GSM5018380,GSM5018381,GSM5018382,GSM5018383,GSM5018384,GSM5018385,GSM5018386,GSM5018387,GSM5018388,GSM5018389,GSM5018390,GSM5018391,GSM5018392,GSM5018393,GSM5018394,GSM5018395,GSM5018396,GSM5018397,GSM5018398,GSM5018399,GSM5018400,GSM5018401,GSM5018402,GSM5018403,GSM5018404,GSM5018405,GSM5018406,GSM5018407,GSM5018408,GSM5018409,GSM5018410,GSM5018411,GSM5018412,GSM5018413,GSM5018414,GSM5018415,GSM5018416,GSM5018417,GSM5018418,GSM5018419,GSM5018420,GSM5018421,GSM5018422,GSM5018423,GSM5018424,GSM5018425,GSM5018426,GSM5018427,GSM5018428,GSM5018429,GSM5018430,GSM5018431,GSM5018432,GSM5018433,GSM5018434,GSM5018435,GSM5018436,GSM5018437
|
2 |
+
Liver_Cancer,,,,,,,,,,,,,,,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
p3/preprocess/Liver_Cancer/clinical_data/GSE174570.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM5319834,GSM5319835,GSM5319836,GSM5319837,GSM5319838,GSM5319839,GSM5319840,GSM5319841,GSM5319842,GSM5319843,GSM5319844,GSM5319845,GSM5319846,GSM5319847,GSM5319848,GSM5319849,GSM5319850,GSM5319851,GSM5319852,GSM5319853,GSM5319854,GSM5319855,GSM5319856,GSM5319857,GSM5319858,GSM5319859,GSM5319860,GSM5319861,GSM5319862,GSM5319863,GSM5319864,GSM5319865,GSM5319866,GSM5319867,GSM5319868,GSM5319869,GSM5319870,GSM5319871,GSM5319872,GSM5319873,GSM5319874,GSM5319875,GSM5319876,GSM5319877,GSM5319878,GSM5319879,GSM5319880,GSM5319881,GSM5319882,GSM5319883,GSM5319884,GSM5319885,GSM5319886,GSM5319887,GSM5319888,GSM5319889,GSM5319890,GSM5319891,GSM5319892,GSM5319893,GSM5319894,GSM5319895,GSM5319896,GSM5319897,GSM5319898,GSM5319899,GSM5319900,GSM5319901,GSM5319902,GSM5319903,GSM5319904,GSM5319905,GSM5319906,GSM5319907,GSM5319908,GSM5319909,GSM5319910,GSM5319911,GSM5319912,GSM5319913,GSM5319914,GSM5319915,GSM5319916,GSM5319917,GSM5319918,GSM5319919,GSM5319920,GSM5319921,GSM5319922,GSM5319923,GSM5319924,GSM5319925,GSM5319926,GSM5319927,GSM5319928,GSM5319929,GSM5319930,GSM5319931,GSM5319932,GSM5319933,GSM5319934,GSM5319935,GSM5319936,GSM5319937,GSM5319938,GSM5319939,GSM5319940,GSM5319941,GSM5319942,GSM5319943,GSM5319944,GSM5319945,GSM5319946,GSM5319947
|
2 |
+
Liver_Cancer,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
p3/preprocess/Liver_Cancer/clinical_data/GSE228782.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM7136390,GSM7136391,GSM7136392,GSM7136393,GSM7136394,GSM7136395,GSM7136396,GSM7136397,GSM7136398,GSM7136399,GSM7136400,GSM7136401,GSM7136402,GSM7136403,GSM7136404,GSM7136405,GSM7136406,GSM7136407,GSM7136408,GSM7136409,GSM7136410,GSM7136411,GSM7136412,GSM7136413,GSM7136414,GSM7136415,GSM7136416,GSM7136417,GSM7136418,GSM7136419,GSM7136420,GSM7136421,GSM7136422,GSM7136423,GSM7136424,GSM7136425,GSM7136426,GSM7136427,GSM7136428,GSM7136429,GSM7136430,GSM7136431,GSM7136432,GSM7136433,GSM7136434,GSM7136435,GSM7136436,GSM7136437,GSM7136438,GSM7136439,GSM7136440,GSM7136441,GSM7136442,GSM7136443,GSM7136444,GSM7136445,GSM7136446,GSM7136447,GSM7136448,GSM7136449,GSM7136450,GSM7136451,GSM7136452,GSM7136453,GSM7136454,GSM7136455,GSM7136456,GSM7136457,GSM7136458,GSM7136460,GSM7136462,GSM7136465,GSM7136468,GSM7136471,GSM7136472,GSM7136473,GSM7136474,GSM7136475,GSM7136476,GSM7136477,GSM7136478,GSM7136479,GSM7136480
|
2 |
+
Liver_Cancer,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,,,,,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,,,,,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,,,,,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
p3/preprocess/Liver_Cancer/clinical_data/GSE228783.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM7136321,GSM7136322,GSM7136323,GSM7136324,GSM7136325,GSM7136326,GSM7136327,GSM7136328,GSM7136329,GSM7136330,GSM7136331,GSM7136332,GSM7136333,GSM7136334,GSM7136335,GSM7136336,GSM7136337,GSM7136338,GSM7136339,GSM7136340,GSM7136341,GSM7136342,GSM7136343,GSM7136344,GSM7136345,GSM7136346,GSM7136347,GSM7136348,GSM7136349,GSM7136350,GSM7136351,GSM7136352,GSM7136353,GSM7136354,GSM7136355,GSM7136356,GSM7136357,GSM7136358,GSM7136359,GSM7136360,GSM7136361,GSM7136362,GSM7136363,GSM7136364,GSM7136365,GSM7136366,GSM7136367,GSM7136368,GSM7136369,GSM7136370,GSM7136371,GSM7136372,GSM7136373,GSM7136374,GSM7136375,GSM7136376,GSM7136377,GSM7136378,GSM7136379,GSM7136380,GSM7136381,GSM7136382,GSM7136383,GSM7136384,GSM7136385,GSM7136386,GSM7136387,GSM7136388,GSM7136389,GSM7136390,GSM7136391,GSM7136392,GSM7136393,GSM7136394,GSM7136395,GSM7136396,GSM7136397,GSM7136398,GSM7136399,GSM7136400,GSM7136401,GSM7136402,GSM7136403,GSM7136404,GSM7136405,GSM7136406,GSM7136407,GSM7136408,GSM7136409,GSM7136410,GSM7136411,GSM7136412,GSM7136413,GSM7136414,GSM7136415,GSM7136416,GSM7136417,GSM7136418,GSM7136419,GSM7136420,GSM7136421,GSM7136422,GSM7136423,GSM7136424,GSM7136425,GSM7136426,GSM7136427,GSM7136428,GSM7136429,GSM7136430,GSM7136431,GSM7136432,GSM7136433,GSM7136434,GSM7136435,GSM7136436,GSM7136437,GSM7136438,GSM7136439,GSM7136440,GSM7136441,GSM7136442,GSM7136443,GSM7136444,GSM7136445,GSM7136446,GSM7136447,GSM7136448,GSM7136449,GSM7136450,GSM7136451,GSM7136452,GSM7136453,GSM7136454,GSM7136455,GSM7136456,GSM7136457,GSM7136458,GSM7136460,GSM7136462,GSM7136465,GSM7136468,GSM7136471,GSM7136472,GSM7136473,GSM7136474,GSM7136475,GSM7136476,GSM7136477,GSM7136478,GSM7136479,GSM7136480
|
2 |
+
Liver_Cancer,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0
|
p3/preprocess/Liver_Cancer/clinical_data/GSE45032.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,GSM1096016,GSM1096017,GSM1096018,GSM1096019,GSM1096020,GSM1096021,GSM1096022,GSM1096023,GSM1096024,GSM1096025,GSM1096026,GSM1096027,GSM1096028,GSM1096029,GSM1096030,GSM1096031,GSM1096032,GSM1096033,GSM1096034,GSM1096035,GSM1096036,GSM1096037,GSM1096038,GSM1096039,GSM1096040,GSM1096041,GSM1096042,GSM1096043,GSM1096044,GSM1096045,GSM1096046,GSM1096047,GSM1096048,GSM1096049,GSM1096050,GSM1096051,GSM1096052,GSM1096053,GSM1096054,GSM1096055,GSM1096056,GSM1096057,GSM1096058,GSM1096059,GSM1096060,GSM1096061,GSM1096062,GSM1096063
|
2 |
+
Liver_Cancer,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
3 |
+
Age,67.0,56.0,76.0,79.0,66.0,70.0,68.0,72.0,62.0,66.0,55.0,62.0,71.0,73.0,74.0,61.0,54.0,64.0,68.0,59.0,79.0,69.0,59.0,71.0,64.0,55.0,66.0,56.0,66.0,68.0,25.0,41.0,50.0,56.0,66.0,58.0,67.0,49.0,63.0,70.0,60.0,50.0,58.0,61.0,60.0,59.0,52.0,51.0
|
4 |
+
Gender,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0
|
p3/preprocess/Liver_Cancer/clinical_data/GSE66843.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM1633236,GSM1633237,GSM1633238,GSM1633239,GSM1633240,GSM1633241,GSM1633242,GSM1633243,GSM1633244,GSM1633245,GSM1633246,GSM1633247,GSM1633248,GSM1633249,GSM1633250,GSM1633251,GSM1633252
|
2 |
+
Liver_Cancer,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0
|
p3/preprocess/Liver_Cancer/clinical_data/TCGA.csv
ADDED
@@ -0,0 +1,439 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
sampleID,Liver_Cancer,Age,Gender
|
2 |
+
TCGA-2V-A95S-01,1,,1
|
3 |
+
TCGA-2Y-A9GS-01,1,58.0,1
|
4 |
+
TCGA-2Y-A9GT-01,1,51.0,1
|
5 |
+
TCGA-2Y-A9GU-01,1,55.0,0
|
6 |
+
TCGA-2Y-A9GV-01,1,54.0,0
|
7 |
+
TCGA-2Y-A9GW-01,1,64.0,1
|
8 |
+
TCGA-2Y-A9GX-01,1,68.0,1
|
9 |
+
TCGA-2Y-A9GY-01,1,64.0,0
|
10 |
+
TCGA-2Y-A9GZ-01,1,82.0,0
|
11 |
+
TCGA-2Y-A9H0-01,1,49.0,1
|
12 |
+
TCGA-2Y-A9H1-01,1,58.0,1
|
13 |
+
TCGA-2Y-A9H2-01,1,64.0,0
|
14 |
+
TCGA-2Y-A9H3-01,1,45.0,1
|
15 |
+
TCGA-2Y-A9H4-01,1,68.0,1
|
16 |
+
TCGA-2Y-A9H5-01,1,59.0,0
|
17 |
+
TCGA-2Y-A9H6-01,1,68.0,0
|
18 |
+
TCGA-2Y-A9H7-01,1,81.0,0
|
19 |
+
TCGA-2Y-A9H8-01,1,85.0,0
|
20 |
+
TCGA-2Y-A9H9-01,1,70.0,1
|
21 |
+
TCGA-2Y-A9HA-01,1,70.0,1
|
22 |
+
TCGA-2Y-A9HB-01,1,66.0,1
|
23 |
+
TCGA-3K-AAZ8-01,1,65.0,1
|
24 |
+
TCGA-4R-AA8I-01,1,66.0,1
|
25 |
+
TCGA-5C-A9VG-01,1,58.0,1
|
26 |
+
TCGA-5C-A9VH-01,1,70.0,1
|
27 |
+
TCGA-5C-AAPD-01,1,61.0,1
|
28 |
+
TCGA-5R-AA1C-01,1,57.0,1
|
29 |
+
TCGA-5R-AA1D-01,1,17.0,0
|
30 |
+
TCGA-5R-AAAM-01,1,65.0,0
|
31 |
+
TCGA-BC-4072-01,1,74.0,0
|
32 |
+
TCGA-BC-4073-01,1,73.0,1
|
33 |
+
TCGA-BC-A10Q-01,1,72.0,0
|
34 |
+
TCGA-BC-A10Q-11,0,72.0,0
|
35 |
+
TCGA-BC-A10R-01,1,66.0,0
|
36 |
+
TCGA-BC-A10R-11,0,66.0,0
|
37 |
+
TCGA-BC-A10S-01,1,81.0,1
|
38 |
+
TCGA-BC-A10S-11,0,81.0,1
|
39 |
+
TCGA-BC-A10T-01,1,76.0,1
|
40 |
+
TCGA-BC-A10T-11,0,76.0,1
|
41 |
+
TCGA-BC-A10U-01,1,69.0,1
|
42 |
+
TCGA-BC-A10U-11,0,69.0,1
|
43 |
+
TCGA-BC-A10W-01,1,50.0,1
|
44 |
+
TCGA-BC-A10W-11,0,50.0,1
|
45 |
+
TCGA-BC-A10X-01,1,52.0,0
|
46 |
+
TCGA-BC-A10X-11,0,52.0,0
|
47 |
+
TCGA-BC-A10Y-01,1,76.0,1
|
48 |
+
TCGA-BC-A10Y-11,0,76.0,1
|
49 |
+
TCGA-BC-A10Z-01,1,62.0,0
|
50 |
+
TCGA-BC-A10Z-11,0,62.0,0
|
51 |
+
TCGA-BC-A110-01,1,51.0,0
|
52 |
+
TCGA-BC-A110-11,0,51.0,0
|
53 |
+
TCGA-BC-A112-01,1,80.0,1
|
54 |
+
TCGA-BC-A112-11,0,80.0,1
|
55 |
+
TCGA-BC-A216-01,1,62.0,0
|
56 |
+
TCGA-BC-A216-11,0,62.0,0
|
57 |
+
TCGA-BC-A217-01,1,75.0,0
|
58 |
+
TCGA-BC-A3KF-01,1,66.0,0
|
59 |
+
TCGA-BC-A3KG-01,1,68.0,0
|
60 |
+
TCGA-BC-A5W4-01,1,69.0,1
|
61 |
+
TCGA-BC-A69H-01,1,64.0,1
|
62 |
+
TCGA-BC-A69I-01,1,69.0,1
|
63 |
+
TCGA-BC-A8YO-01,1,66.0,0
|
64 |
+
TCGA-BD-A2L6-01,1,69.0,1
|
65 |
+
TCGA-BD-A2L6-11,0,69.0,1
|
66 |
+
TCGA-BD-A3EP-01,1,75.0,0
|
67 |
+
TCGA-BD-A3EP-11,0,75.0,0
|
68 |
+
TCGA-BD-A3ER-01,1,62.0,1
|
69 |
+
TCGA-BW-A5NO-01,1,50.0,1
|
70 |
+
TCGA-BW-A5NP-01,1,26.0,0
|
71 |
+
TCGA-BW-A5NQ-01,1,63.0,1
|
72 |
+
TCGA-CC-5258-01,1,48.0,1
|
73 |
+
TCGA-CC-5259-01,1,60.0,0
|
74 |
+
TCGA-CC-5260-01,1,61.0,0
|
75 |
+
TCGA-CC-5261-01,1,44.0,1
|
76 |
+
TCGA-CC-5262-01,1,67.0,1
|
77 |
+
TCGA-CC-5263-01,1,35.0,1
|
78 |
+
TCGA-CC-5264-01,1,71.0,1
|
79 |
+
TCGA-CC-A123-01,1,24.0,0
|
80 |
+
TCGA-CC-A1HT-01,1,50.0,1
|
81 |
+
TCGA-CC-A3M9-01,1,45.0,1
|
82 |
+
TCGA-CC-A3MA-01,1,61.0,1
|
83 |
+
TCGA-CC-A3MB-01,1,36.0,1
|
84 |
+
TCGA-CC-A3MC-01,1,54.0,1
|
85 |
+
TCGA-CC-A5UC-01,1,63.0,1
|
86 |
+
TCGA-CC-A5UD-01,1,45.0,1
|
87 |
+
TCGA-CC-A5UE-01,1,48.0,1
|
88 |
+
TCGA-CC-A7IE-01,1,57.0,1
|
89 |
+
TCGA-CC-A7IF-01,1,59.0,1
|
90 |
+
TCGA-CC-A7IG-01,1,47.0,1
|
91 |
+
TCGA-CC-A7IH-01,1,58.0,1
|
92 |
+
TCGA-CC-A7II-01,1,54.0,1
|
93 |
+
TCGA-CC-A7IJ-01,1,56.0,1
|
94 |
+
TCGA-CC-A7IK-01,1,59.0,1
|
95 |
+
TCGA-CC-A7IL-01,1,61.0,1
|
96 |
+
TCGA-CC-A8HS-01,1,18.0,1
|
97 |
+
TCGA-CC-A8HT-01,1,74.0,1
|
98 |
+
TCGA-CC-A8HU-01,1,39.0,0
|
99 |
+
TCGA-CC-A8HV-01,1,51.0,0
|
100 |
+
TCGA-CC-A9FS-01,1,55.0,1
|
101 |
+
TCGA-CC-A9FU-01,1,52.0,0
|
102 |
+
TCGA-CC-A9FV-01,1,57.0,1
|
103 |
+
TCGA-CC-A9FW-01,1,68.0,1
|
104 |
+
TCGA-DD-A113-01,1,55.0,0
|
105 |
+
TCGA-DD-A113-11,0,55.0,0
|
106 |
+
TCGA-DD-A114-01,1,42.0,1
|
107 |
+
TCGA-DD-A114-11,0,42.0,1
|
108 |
+
TCGA-DD-A115-01,1,53.0,1
|
109 |
+
TCGA-DD-A115-11,0,53.0,1
|
110 |
+
TCGA-DD-A116-01,1,68.0,1
|
111 |
+
TCGA-DD-A116-11,0,68.0,1
|
112 |
+
TCGA-DD-A118-01,1,77.0,0
|
113 |
+
TCGA-DD-A118-11,0,77.0,0
|
114 |
+
TCGA-DD-A119-01,1,40.0,1
|
115 |
+
TCGA-DD-A119-11,0,40.0,1
|
116 |
+
TCGA-DD-A11A-01,1,67.0,1
|
117 |
+
TCGA-DD-A11A-11,0,67.0,1
|
118 |
+
TCGA-DD-A11B-01,1,73.0,1
|
119 |
+
TCGA-DD-A11B-11,0,73.0,1
|
120 |
+
TCGA-DD-A11C-01,1,69.0,1
|
121 |
+
TCGA-DD-A11C-11,0,69.0,1
|
122 |
+
TCGA-DD-A11D-01,1,57.0,0
|
123 |
+
TCGA-DD-A11D-11,0,57.0,0
|
124 |
+
TCGA-DD-A1E9-01,1,70.0,1
|
125 |
+
TCGA-DD-A1E9-11,0,70.0,1
|
126 |
+
TCGA-DD-A1EA-01,1,68.0,1
|
127 |
+
TCGA-DD-A1EB-01,1,72.0,0
|
128 |
+
TCGA-DD-A1EB-11,0,72.0,0
|
129 |
+
TCGA-DD-A1EC-01,1,20.0,0
|
130 |
+
TCGA-DD-A1EC-11,0,20.0,0
|
131 |
+
TCGA-DD-A1ED-01,1,68.0,1
|
132 |
+
TCGA-DD-A1ED-11,0,68.0,1
|
133 |
+
TCGA-DD-A1EE-01,1,73.0,1
|
134 |
+
TCGA-DD-A1EE-11,0,73.0,1
|
135 |
+
TCGA-DD-A1EF-01,1,57.0,0
|
136 |
+
TCGA-DD-A1EF-11,0,57.0,0
|
137 |
+
TCGA-DD-A1EG-01,1,76.0,1
|
138 |
+
TCGA-DD-A1EG-11,0,76.0,1
|
139 |
+
TCGA-DD-A1EH-01,1,23.0,1
|
140 |
+
TCGA-DD-A1EH-11,0,23.0,1
|
141 |
+
TCGA-DD-A1EI-01,1,46.0,1
|
142 |
+
TCGA-DD-A1EI-11,0,46.0,1
|
143 |
+
TCGA-DD-A1EJ-01,1,71.0,0
|
144 |
+
TCGA-DD-A1EJ-11,0,71.0,0
|
145 |
+
TCGA-DD-A1EK-01,1,64.0,0
|
146 |
+
TCGA-DD-A1EL-01,1,23.0,1
|
147 |
+
TCGA-DD-A1EL-11,0,23.0,1
|
148 |
+
TCGA-DD-A39V-01,1,77.0,1
|
149 |
+
TCGA-DD-A39V-11,0,77.0,1
|
150 |
+
TCGA-DD-A39W-01,1,29.0,0
|
151 |
+
TCGA-DD-A39W-11,0,29.0,0
|
152 |
+
TCGA-DD-A39X-01,1,78.0,0
|
153 |
+
TCGA-DD-A39X-11,0,78.0,0
|
154 |
+
TCGA-DD-A39Y-01,1,67.0,1
|
155 |
+
TCGA-DD-A39Z-01,1,43.0,0
|
156 |
+
TCGA-DD-A39Z-11,0,43.0,0
|
157 |
+
TCGA-DD-A3A0-01,1,70.0,1
|
158 |
+
TCGA-DD-A3A1-01,1,65.0,1
|
159 |
+
TCGA-DD-A3A1-11,0,65.0,1
|
160 |
+
TCGA-DD-A3A2-01,1,76.0,0
|
161 |
+
TCGA-DD-A3A2-11,0,76.0,0
|
162 |
+
TCGA-DD-A3A3-01,1,45.0,1
|
163 |
+
TCGA-DD-A3A3-11,0,45.0,1
|
164 |
+
TCGA-DD-A3A4-01,1,37.0,1
|
165 |
+
TCGA-DD-A3A4-11,0,37.0,1
|
166 |
+
TCGA-DD-A3A5-01,1,66.0,0
|
167 |
+
TCGA-DD-A3A5-11,0,66.0,0
|
168 |
+
TCGA-DD-A3A6-01,1,72.0,0
|
169 |
+
TCGA-DD-A3A6-11,0,72.0,0
|
170 |
+
TCGA-DD-A3A7-01,1,67.0,1
|
171 |
+
TCGA-DD-A3A8-01,1,75.0,1
|
172 |
+
TCGA-DD-A3A8-11,0,75.0,1
|
173 |
+
TCGA-DD-A3A9-01,1,64.0,0
|
174 |
+
TCGA-DD-A4NA-01,1,67.0,0
|
175 |
+
TCGA-DD-A4NB-01,1,25.0,1
|
176 |
+
TCGA-DD-A4ND-01,1,56.0,0
|
177 |
+
TCGA-DD-A4NE-01,1,75.0,0
|
178 |
+
TCGA-DD-A4NF-01,1,72.0,1
|
179 |
+
TCGA-DD-A4NG-01,1,77.0,1
|
180 |
+
TCGA-DD-A4NH-01,1,65.0,0
|
181 |
+
TCGA-DD-A4NI-01,1,67.0,1
|
182 |
+
TCGA-DD-A4NJ-01,1,54.0,0
|
183 |
+
TCGA-DD-A4NK-01,1,80.0,0
|
184 |
+
TCGA-DD-A4NL-01,1,46.0,1
|
185 |
+
TCGA-DD-A4NN-01,1,56.0,0
|
186 |
+
TCGA-DD-A4NO-01,1,65.0,1
|
187 |
+
TCGA-DD-A4NP-01,1,32.0,1
|
188 |
+
TCGA-DD-A4NQ-01,1,60.0,1
|
189 |
+
TCGA-DD-A4NR-01,1,85.0,0
|
190 |
+
TCGA-DD-A4NS-01,1,61.0,0
|
191 |
+
TCGA-DD-A4NV-01,1,61.0,1
|
192 |
+
TCGA-DD-A73A-01,1,71.0,1
|
193 |
+
TCGA-DD-A73B-01,1,72.0,0
|
194 |
+
TCGA-DD-A73C-01,1,65.0,0
|
195 |
+
TCGA-DD-A73D-01,1,68.0,0
|
196 |
+
TCGA-DD-A73E-01,1,66.0,1
|
197 |
+
TCGA-DD-A73F-01,1,77.0,0
|
198 |
+
TCGA-DD-A73G-01,1,73.0,0
|
199 |
+
TCGA-DD-AA3A-01,1,81.0,0
|
200 |
+
TCGA-DD-AAC8-01,1,72.0,1
|
201 |
+
TCGA-DD-AAC9-01,1,51.0,1
|
202 |
+
TCGA-DD-AACA-01,1,65.0,1
|
203 |
+
TCGA-DD-AACA-02,1,65.0,1
|
204 |
+
TCGA-DD-AACB-01,1,74.0,0
|
205 |
+
TCGA-DD-AACC-01,1,61.0,1
|
206 |
+
TCGA-DD-AACD-01,1,48.0,1
|
207 |
+
TCGA-DD-AACE-01,1,62.0,1
|
208 |
+
TCGA-DD-AACF-01,1,68.0,1
|
209 |
+
TCGA-DD-AACG-01,1,52.0,1
|
210 |
+
TCGA-DD-AACH-01,1,69.0,1
|
211 |
+
TCGA-DD-AACI-01,1,69.0,1
|
212 |
+
TCGA-DD-AACJ-01,1,75.0,1
|
213 |
+
TCGA-DD-AACK-01,1,70.0,1
|
214 |
+
TCGA-DD-AACL-01,1,66.0,0
|
215 |
+
TCGA-DD-AACM-01,1,48.0,1
|
216 |
+
TCGA-DD-AACN-01,1,32.0,1
|
217 |
+
TCGA-DD-AACO-01,1,40.0,1
|
218 |
+
TCGA-DD-AACP-01,1,64.0,1
|
219 |
+
TCGA-DD-AACQ-01,1,50.0,1
|
220 |
+
TCGA-DD-AACS-01,1,39.0,1
|
221 |
+
TCGA-DD-AACT-01,1,69.0,0
|
222 |
+
TCGA-DD-AACU-01,1,59.0,1
|
223 |
+
TCGA-DD-AACV-01,1,53.0,1
|
224 |
+
TCGA-DD-AACW-01,1,43.0,1
|
225 |
+
TCGA-DD-AACX-01,1,66.0,1
|
226 |
+
TCGA-DD-AACY-01,1,61.0,1
|
227 |
+
TCGA-DD-AACZ-01,1,63.0,0
|
228 |
+
TCGA-DD-AAD0-01,1,73.0,0
|
229 |
+
TCGA-DD-AAD1-01,1,51.0,0
|
230 |
+
TCGA-DD-AAD2-01,1,66.0,1
|
231 |
+
TCGA-DD-AAD3-01,1,43.0,1
|
232 |
+
TCGA-DD-AAD5-01,1,54.0,1
|
233 |
+
TCGA-DD-AAD6-01,1,66.0,1
|
234 |
+
TCGA-DD-AAD8-01,1,73.0,0
|
235 |
+
TCGA-DD-AADA-01,1,66.0,0
|
236 |
+
TCGA-DD-AADB-01,1,51.0,1
|
237 |
+
TCGA-DD-AADC-01,1,53.0,1
|
238 |
+
TCGA-DD-AADD-01,1,51.0,1
|
239 |
+
TCGA-DD-AADE-01,1,50.0,1
|
240 |
+
TCGA-DD-AADF-01,1,64.0,0
|
241 |
+
TCGA-DD-AADG-01,1,70.0,1
|
242 |
+
TCGA-DD-AADI-01,1,43.0,0
|
243 |
+
TCGA-DD-AADJ-01,1,70.0,0
|
244 |
+
TCGA-DD-AADK-01,1,68.0,0
|
245 |
+
TCGA-DD-AADL-01,1,58.0,1
|
246 |
+
TCGA-DD-AADM-01,1,58.0,1
|
247 |
+
TCGA-DD-AADN-01,1,59.0,1
|
248 |
+
TCGA-DD-AADO-01,1,55.0,1
|
249 |
+
TCGA-DD-AADP-01,1,45.0,1
|
250 |
+
TCGA-DD-AADQ-01,1,59.0,1
|
251 |
+
TCGA-DD-AADR-01,1,58.0,1
|
252 |
+
TCGA-DD-AADS-01,1,63.0,1
|
253 |
+
TCGA-DD-AADU-01,1,60.0,1
|
254 |
+
TCGA-DD-AADV-01,1,50.0,1
|
255 |
+
TCGA-DD-AADW-01,1,48.0,1
|
256 |
+
TCGA-DD-AADY-01,1,55.0,0
|
257 |
+
TCGA-DD-AAE0-01,1,45.0,0
|
258 |
+
TCGA-DD-AAE1-01,1,52.0,1
|
259 |
+
TCGA-DD-AAE2-01,1,51.0,1
|
260 |
+
TCGA-DD-AAE3-01,1,50.0,1
|
261 |
+
TCGA-DD-AAE4-01,1,49.0,0
|
262 |
+
TCGA-DD-AAE6-01,1,59.0,0
|
263 |
+
TCGA-DD-AAE7-01,1,72.0,1
|
264 |
+
TCGA-DD-AAE8-01,1,45.0,1
|
265 |
+
TCGA-DD-AAE9-01,1,69.0,1
|
266 |
+
TCGA-DD-AAEA-01,1,65.0,1
|
267 |
+
TCGA-DD-AAEB-01,1,60.0,1
|
268 |
+
TCGA-DD-AAED-01,1,51.0,1
|
269 |
+
TCGA-DD-AAEE-01,1,55.0,1
|
270 |
+
TCGA-DD-AAEG-01,1,59.0,0
|
271 |
+
TCGA-DD-AAEH-01,1,73.0,1
|
272 |
+
TCGA-DD-AAEI-01,1,72.0,1
|
273 |
+
TCGA-DD-AAEK-01,1,51.0,1
|
274 |
+
TCGA-DD-AAVP-01,1,48.0,1
|
275 |
+
TCGA-DD-AAVQ-01,1,38.0,1
|
276 |
+
TCGA-DD-AAVR-01,1,44.0,1
|
277 |
+
TCGA-DD-AAVS-01,1,56.0,1
|
278 |
+
TCGA-DD-AAVU-01,1,46.0,1
|
279 |
+
TCGA-DD-AAVV-01,1,56.0,1
|
280 |
+
TCGA-DD-AAVW-01,1,35.0,1
|
281 |
+
TCGA-DD-AAVX-01,1,38.0,1
|
282 |
+
TCGA-DD-AAVY-01,1,56.0,1
|
283 |
+
TCGA-DD-AAVZ-01,1,38.0,1
|
284 |
+
TCGA-DD-AAW0-01,1,54.0,1
|
285 |
+
TCGA-DD-AAW1-01,1,55.0,1
|
286 |
+
TCGA-DD-AAW2-01,1,69.0,1
|
287 |
+
TCGA-DD-AAW3-01,1,69.0,1
|
288 |
+
TCGA-ED-A459-01,1,47.0,1
|
289 |
+
TCGA-ED-A4XI-01,1,58.0,1
|
290 |
+
TCGA-ED-A5KG-01,1,60.0,0
|
291 |
+
TCGA-ED-A627-01,1,74.0,1
|
292 |
+
TCGA-ED-A66X-01,1,35.0,1
|
293 |
+
TCGA-ED-A66Y-01,1,51.0,0
|
294 |
+
TCGA-ED-A7PX-01,1,48.0,0
|
295 |
+
TCGA-ED-A7PY-01,1,20.0,0
|
296 |
+
TCGA-ED-A7PZ-01,1,61.0,1
|
297 |
+
TCGA-ED-A7XO-01,1,29.0,1
|
298 |
+
TCGA-ED-A7XP-01,1,53.0,0
|
299 |
+
TCGA-ED-A82E-01,1,60.0,0
|
300 |
+
TCGA-ED-A8O5-01,1,59.0,0
|
301 |
+
TCGA-ED-A8O6-01,1,50.0,0
|
302 |
+
TCGA-ED-A97K-01,1,54.0,1
|
303 |
+
TCGA-EP-A12J-01,1,62.0,1
|
304 |
+
TCGA-EP-A12J-11,0,62.0,1
|
305 |
+
TCGA-EP-A26S-01,1,70.0,1
|
306 |
+
TCGA-EP-A26S-11,0,70.0,1
|
307 |
+
TCGA-EP-A2KA-01,1,52.0,0
|
308 |
+
TCGA-EP-A2KB-01,1,46.0,0
|
309 |
+
TCGA-EP-A2KC-01,1,62.0,1
|
310 |
+
TCGA-EP-A3JL-01,1,76.0,1
|
311 |
+
TCGA-EP-A3RK-01,1,73.0,1
|
312 |
+
TCGA-EP-A3RK-11,0,73.0,1
|
313 |
+
TCGA-ES-A2HS-01,1,80.0,1
|
314 |
+
TCGA-ES-A2HS-11,0,80.0,1
|
315 |
+
TCGA-ES-A2HT-01,1,54.0,1
|
316 |
+
TCGA-ES-A2HT-11,0,54.0,1
|
317 |
+
TCGA-FV-A23B-01,1,70.0,0
|
318 |
+
TCGA-FV-A23B-11,0,70.0,0
|
319 |
+
TCGA-FV-A2QQ-01,1,80.0,1
|
320 |
+
TCGA-FV-A2QR-01,1,75.0,1
|
321 |
+
TCGA-FV-A2QR-11,0,75.0,1
|
322 |
+
TCGA-FV-A3I0-01,1,76.0,0
|
323 |
+
TCGA-FV-A3I0-11,0,76.0,0
|
324 |
+
TCGA-FV-A3I1-01,1,81.0,0
|
325 |
+
TCGA-FV-A3I1-11,0,81.0,0
|
326 |
+
TCGA-FV-A3R2-01,1,75.0,1
|
327 |
+
TCGA-FV-A3R2-11,0,75.0,1
|
328 |
+
TCGA-FV-A3R3-01,1,38.0,0
|
329 |
+
TCGA-FV-A495-01,1,51.0,0
|
330 |
+
TCGA-FV-A496-01,1,84.0,0
|
331 |
+
TCGA-FV-A4ZP-01,1,78.0,1
|
332 |
+
TCGA-FV-A4ZQ-01,1,52.0,1
|
333 |
+
TCGA-G3-A25S-01,1,64.0,1
|
334 |
+
TCGA-G3-A25T-01,1,45.0,0
|
335 |
+
TCGA-G3-A25U-01,1,63.0,0
|
336 |
+
TCGA-G3-A25V-01,1,68.0,1
|
337 |
+
TCGA-G3-A25W-01,1,79.0,0
|
338 |
+
TCGA-G3-A25W-11,0,79.0,0
|
339 |
+
TCGA-G3-A25X-01,1,73.0,1
|
340 |
+
TCGA-G3-A25X-11,0,73.0,1
|
341 |
+
TCGA-G3-A25Y-01,1,52.0,0
|
342 |
+
TCGA-G3-A25Z-01,1,58.0,1
|
343 |
+
TCGA-G3-A3CG-01,1,80.0,1
|
344 |
+
TCGA-G3-A3CH-01,1,53.0,1
|
345 |
+
TCGA-G3-A3CH-11,0,53.0,1
|
346 |
+
TCGA-G3-A3CI-01,1,71.0,1
|
347 |
+
TCGA-G3-A3CJ-01,1,52.0,1
|
348 |
+
TCGA-G3-A3CK-01,1,61.0,1
|
349 |
+
TCGA-G3-A5SI-01,1,44.0,1
|
350 |
+
TCGA-G3-A5SJ-01,1,59.0,1
|
351 |
+
TCGA-G3-A5SK-01,1,58.0,1
|
352 |
+
TCGA-G3-A5SL-01,1,70.0,1
|
353 |
+
TCGA-G3-A5SM-01,1,58.0,1
|
354 |
+
TCGA-G3-A6UC-01,1,65.0,1
|
355 |
+
TCGA-G3-A7M5-01,1,76.0,1
|
356 |
+
TCGA-G3-A7M6-01,1,60.0,0
|
357 |
+
TCGA-G3-A7M7-01,1,65.0,1
|
358 |
+
TCGA-G3-A7M8-01,1,31.0,1
|
359 |
+
TCGA-G3-A7M9-01,1,70.0,1
|
360 |
+
TCGA-G3-AAUZ-01,1,48.0,1
|
361 |
+
TCGA-G3-AAV0-01,1,58.0,1
|
362 |
+
TCGA-G3-AAV1-01,1,51.0,1
|
363 |
+
TCGA-G3-AAV2-01,1,50.0,1
|
364 |
+
TCGA-G3-AAV3-01,1,58.0,0
|
365 |
+
TCGA-G3-AAV4-01,1,83.0,0
|
366 |
+
TCGA-G3-AAV5-01,1,67.0,1
|
367 |
+
TCGA-G3-AAV6-01,1,53.0,0
|
368 |
+
TCGA-G3-AAV7-01,1,38.0,1
|
369 |
+
TCGA-GJ-A3OU-01,1,59.0,1
|
370 |
+
TCGA-GJ-A6C0-01,1,75.0,0
|
371 |
+
TCGA-GJ-A9DB-01,1,68.0,1
|
372 |
+
TCGA-HP-A5MZ-01,1,78.0,1
|
373 |
+
TCGA-HP-A5N0-01,1,90.0,0
|
374 |
+
TCGA-K7-A5RF-01,1,64.0,1
|
375 |
+
TCGA-K7-A5RG-01,1,66.0,1
|
376 |
+
TCGA-K7-A6G5-01,1,66.0,1
|
377 |
+
TCGA-K7-AAU7-01,1,61.0,1
|
378 |
+
TCGA-KR-A7K0-01,1,65.0,1
|
379 |
+
TCGA-KR-A7K2-01,1,64.0,1
|
380 |
+
TCGA-KR-A7K7-01,1,61.0,0
|
381 |
+
TCGA-KR-A7K8-01,1,57.0,1
|
382 |
+
TCGA-LG-A6GG-01,1,79.0,0
|
383 |
+
TCGA-LG-A9QC-01,1,48.0,1
|
384 |
+
TCGA-LG-A9QD-01,1,68.0,1
|
385 |
+
TCGA-MI-A75C-01,1,64.0,1
|
386 |
+
TCGA-MI-A75E-01,1,61.0,1
|
387 |
+
TCGA-MI-A75G-01,1,63.0,1
|
388 |
+
TCGA-MI-A75H-01,1,77.0,1
|
389 |
+
TCGA-MI-A75I-01,1,61.0,1
|
390 |
+
TCGA-MR-A520-01,1,58.0,1
|
391 |
+
TCGA-MR-A8JO-01,1,34.0,1
|
392 |
+
TCGA-NI-A4U2-01,1,71.0,1
|
393 |
+
TCGA-NI-A8LF-01,1,74.0,1
|
394 |
+
TCGA-O8-A75V-01,1,54.0,1
|
395 |
+
TCGA-PD-A5DF-01,1,58.0,0
|
396 |
+
TCGA-QA-A7B7-01,1,48.0,1
|
397 |
+
TCGA-RC-A6M3-01,1,24.0,1
|
398 |
+
TCGA-RC-A6M4-01,1,74.0,0
|
399 |
+
TCGA-RC-A6M5-01,1,20.0,0
|
400 |
+
TCGA-RC-A6M6-01,1,75.0,1
|
401 |
+
TCGA-RC-A7S9-01,1,47.0,0
|
402 |
+
TCGA-RC-A7SB-01,1,53.0,1
|
403 |
+
TCGA-RC-A7SF-01,1,66.0,1
|
404 |
+
TCGA-RC-A7SH-01,1,42.0,1
|
405 |
+
TCGA-RC-A7SK-01,1,59.0,1
|
406 |
+
TCGA-RG-A7D4-01,1,69.0,1
|
407 |
+
TCGA-T1-A6J8-01,1,68.0,1
|
408 |
+
TCGA-UB-A7MA-01,1,62.0,0
|
409 |
+
TCGA-UB-A7MB-01,1,24.0,1
|
410 |
+
TCGA-UB-A7MC-01,1,59.0,1
|
411 |
+
TCGA-UB-A7MD-01,1,67.0,1
|
412 |
+
TCGA-UB-A7ME-01,1,51.0,1
|
413 |
+
TCGA-UB-A7MF-01,1,56.0,1
|
414 |
+
TCGA-UB-AA0U-01,1,60.0,1
|
415 |
+
TCGA-UB-AA0V-01,1,69.0,0
|
416 |
+
TCGA-WJ-A86L-01,1,68.0,0
|
417 |
+
TCGA-WQ-A9G7-01,1,71.0,0
|
418 |
+
TCGA-WQ-AB4B-01,1,62.0,1
|
419 |
+
TCGA-WX-AA44-01,1,64.0,0
|
420 |
+
TCGA-WX-AA46-01,1,61.0,1
|
421 |
+
TCGA-WX-AA47-01,1,33.0,0
|
422 |
+
TCGA-XR-A8TC-01,1,43.0,0
|
423 |
+
TCGA-XR-A8TD-01,1,49.0,0
|
424 |
+
TCGA-XR-A8TE-01,1,16.0,1
|
425 |
+
TCGA-XR-A8TF-01,1,74.0,1
|
426 |
+
TCGA-XR-A8TG-01,1,58.0,1
|
427 |
+
TCGA-YA-A8S7-01,1,68.0,1
|
428 |
+
TCGA-ZP-A9CV-01,1,59.0,1
|
429 |
+
TCGA-ZP-A9CY-01,1,66.0,0
|
430 |
+
TCGA-ZP-A9CZ-01,1,72.0,1
|
431 |
+
TCGA-ZP-A9D0-01,1,67.0,0
|
432 |
+
TCGA-ZP-A9D1-01,1,56.0,0
|
433 |
+
TCGA-ZP-A9D2-01,1,51.0,1
|
434 |
+
TCGA-ZP-A9D4-01,1,64.0,0
|
435 |
+
TCGA-ZS-A9CD-01,1,73.0,1
|
436 |
+
TCGA-ZS-A9CE-01,1,79.0,0
|
437 |
+
TCGA-ZS-A9CF-01,1,64.0,1
|
438 |
+
TCGA-ZS-A9CF-02,1,64.0,1
|
439 |
+
TCGA-ZS-A9CG-01,1,55.0,1
|
p3/preprocess/Liver_Cancer/code/GSE148346.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Liver_Cancer"
|
6 |
+
cohort = "GSE148346"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Liver_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Liver_Cancer/GSE148346"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Liver_Cancer/GSE148346.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Liver_Cancer/gene_data/GSE148346.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Liver_Cancer/clinical_data/GSE148346.csv"
|
16 |
+
json_path = "./output/preprocess/3/Liver_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# Step 1: Get file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Step 2: Extract background info and clinical data from matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
|
24 |
+
# Step 3: Get dictionary of unique values for each clinical feature
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Step 4: Print background info and sample characteristics
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print("-" * 80)
|
30 |
+
print(background_info)
|
31 |
+
print("\nSample Characteristics:")
|
32 |
+
print("-" * 80)
|
33 |
+
print(json.dumps(unique_values_dict, indent=2))
|
34 |
+
# 1. Gene Expression Data Availability
|
35 |
+
# Based on the background information, this appears to be a biopsy study with gene expression analysis
|
36 |
+
is_gene_available = True
|
37 |
+
|
38 |
+
# 2. Variable Availability and Data Type Conversion
|
39 |
+
# For trait, we can use tissue disease state (key 3) which indicates lesional (LS) vs non-lesional (NL) liver tissue
|
40 |
+
trait_row = 3
|
41 |
+
def convert_trait(x: str) -> Optional[int]:
|
42 |
+
if not isinstance(x, str):
|
43 |
+
return None
|
44 |
+
value = x.split(': ')[-1]
|
45 |
+
if value == 'LS':
|
46 |
+
return 1 # Lesional
|
47 |
+
elif value == 'NL':
|
48 |
+
return 0 # Non-lesional
|
49 |
+
return None
|
50 |
+
|
51 |
+
# No age information available
|
52 |
+
age_row = None
|
53 |
+
convert_age = None
|
54 |
+
|
55 |
+
# No gender information available
|
56 |
+
gender_row = None
|
57 |
+
convert_gender = None
|
58 |
+
|
59 |
+
# 3. Save metadata
|
60 |
+
is_trait_available = trait_row is not None
|
61 |
+
_ = validate_and_save_cohort_info(
|
62 |
+
is_final=False,
|
63 |
+
cohort=cohort,
|
64 |
+
info_path=json_path,
|
65 |
+
is_gene_available=is_gene_available,
|
66 |
+
is_trait_available=is_trait_available
|
67 |
+
)
|
68 |
+
|
69 |
+
# 4. Clinical feature extraction
|
70 |
+
if trait_row is not None:
|
71 |
+
selected_clinical = geo_select_clinical_features(
|
72 |
+
clinical_df=clinical_data,
|
73 |
+
trait=trait,
|
74 |
+
trait_row=trait_row,
|
75 |
+
convert_trait=convert_trait,
|
76 |
+
age_row=age_row,
|
77 |
+
convert_age=convert_age,
|
78 |
+
gender_row=gender_row,
|
79 |
+
convert_gender=convert_gender
|
80 |
+
)
|
81 |
+
|
82 |
+
# Preview the data
|
83 |
+
print(preview_df(selected_clinical))
|
84 |
+
|
85 |
+
# Save to file
|
86 |
+
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
|
87 |
+
selected_clinical.to_csv(out_clinical_data_file)
|
88 |
+
# 1. Extract gene expression data from matrix file
|
89 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
90 |
+
|
91 |
+
# 2. Print first 20 row IDs
|
92 |
+
print("First 20 gene/probe identifiers:")
|
93 |
+
print(genetic_data.index[:20])
|
94 |
+
# Those are Affymetrix probe IDs (_at suffix is characteristic of Affy arrays)
|
95 |
+
# They need to be mapped to gene symbols for consistency and interpretability
|
96 |
+
requires_gene_mapping = True
|
97 |
+
# 1. Extract gene annotation data from SOFT file
|
98 |
+
gene_annotation = get_gene_annotation(soft_file_path)
|
99 |
+
|
100 |
+
# 2. Preview annotation data
|
101 |
+
print("Column names and first few values in gene annotation data:")
|
102 |
+
print(preview_df(gene_annotation))
|
103 |
+
# 1. Get gene mapping dataframe from annotation
|
104 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
|
105 |
+
|
106 |
+
# 2. Apply mapping to convert probe level data to gene level data
|
107 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_df)
|
108 |
+
|
109 |
+
# Preview gene data
|
110 |
+
print("\nFirst 5 genes and 5 samples of gene expression data:")
|
111 |
+
print(gene_data.iloc[:5, :5])
|
112 |
+
# 1. Normalize gene symbols and save gene data
|
113 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
114 |
+
gene_data.to_csv(out_gene_data_file)
|
115 |
+
|
116 |
+
# 2. Link clinical and genetic data
|
117 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)
|
118 |
+
|
119 |
+
# 3. Handle missing values
|
120 |
+
linked_data = handle_missing_values(linked_data, trait)
|
121 |
+
|
122 |
+
# 4. Judge if features are biased
|
123 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
124 |
+
|
125 |
+
# 5. Save cohort information
|
126 |
+
is_usable = validate_and_save_cohort_info(
|
127 |
+
is_final=True,
|
128 |
+
cohort=cohort,
|
129 |
+
info_path=json_path,
|
130 |
+
is_gene_available=True,
|
131 |
+
is_trait_available=True,
|
132 |
+
is_biased=trait_biased,
|
133 |
+
df=linked_data,
|
134 |
+
note="Expression array data of NASH-HCC patients and NASH controls. No age/gender information available."
|
135 |
+
)
|
136 |
+
|
137 |
+
# 6. Save linked data if usable
|
138 |
+
if is_usable:
|
139 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Liver_Cancer/code/GSE164760.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Liver_Cancer"
|
6 |
+
cohort = "GSE164760"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Liver_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Liver_Cancer/GSE164760"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Liver_Cancer/GSE164760.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Liver_Cancer/gene_data/GSE164760.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Liver_Cancer/clinical_data/GSE164760.csv"
|
16 |
+
json_path = "./output/preprocess/3/Liver_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# Step 1: Get file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Step 2: Extract background info and clinical data from matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
|
24 |
+
# Step 3: Get dictionary of unique values for each clinical feature
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Step 4: Print background info and sample characteristics
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print("-" * 80)
|
30 |
+
print(background_info)
|
31 |
+
print("\nSample Characteristics:")
|
32 |
+
print("-" * 80)
|
33 |
+
print(json.dumps(unique_values_dict, indent=2))
|
34 |
+
# 1. Gene Expression Data Availability
|
35 |
+
# According to the series title and summary, this dataset focuses on molecular characterization with expression arrays
|
36 |
+
is_gene_available = True
|
37 |
+
|
38 |
+
# 2.1 Data Availability
|
39 |
+
# - Trait (NASH-HCC vs non-tumoral) can be inferred from tissue type at row 0
|
40 |
+
trait_row = 0
|
41 |
+
# - Age is not available in sample characteristics
|
42 |
+
age_row = None
|
43 |
+
# - Gender is not available in sample characteristics
|
44 |
+
gender_row = None
|
45 |
+
|
46 |
+
# 2.2 Data Type Conversion Functions
|
47 |
+
def convert_trait(value: str) -> Optional[int]:
|
48 |
+
"""Convert tissue type to binary trait value.
|
49 |
+
1: NASH-HCC tumor (case)
|
50 |
+
0: NASH liver, non-tumoral NASH liver (control)
|
51 |
+
None: Healthy liver, cirrhotic liver (excluded)
|
52 |
+
"""
|
53 |
+
if not value or ':' not in value:
|
54 |
+
return None
|
55 |
+
tissue = value.split(':', 1)[1].strip().lower()
|
56 |
+
if 'nash-hcc tumor' in tissue:
|
57 |
+
return 1
|
58 |
+
elif 'nash liver' in tissue:
|
59 |
+
return 0
|
60 |
+
else:
|
61 |
+
return None
|
62 |
+
|
63 |
+
def convert_age(value: str) -> Optional[float]:
|
64 |
+
return None # Not used
|
65 |
+
|
66 |
+
def convert_gender(value: str) -> Optional[int]:
|
67 |
+
return None # Not used
|
68 |
+
|
69 |
+
# 3. Save Metadata
|
70 |
+
validate_and_save_cohort_info(
|
71 |
+
is_final=False,
|
72 |
+
cohort=cohort,
|
73 |
+
info_path=json_path,
|
74 |
+
is_gene_available=is_gene_available,
|
75 |
+
is_trait_available=(trait_row is not None)
|
76 |
+
)
|
77 |
+
|
78 |
+
# 4. Clinical Feature Extraction
|
79 |
+
if trait_row is not None:
|
80 |
+
clinical_data_processed = geo_select_clinical_features(
|
81 |
+
clinical_df=clinical_data,
|
82 |
+
trait=trait,
|
83 |
+
trait_row=trait_row,
|
84 |
+
convert_trait=convert_trait
|
85 |
+
)
|
86 |
+
|
87 |
+
# Preview the processed data
|
88 |
+
print("Preview of processed clinical data:")
|
89 |
+
print(preview_df(clinical_data_processed))
|
90 |
+
|
91 |
+
# Save to CSV
|
92 |
+
clinical_data_processed.to_csv(out_clinical_data_file)
|
93 |
+
# 1. Extract gene expression data from matrix file
|
94 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
95 |
+
|
96 |
+
# 2. Print first 20 row IDs
|
97 |
+
print("First 20 gene/probe identifiers:")
|
98 |
+
print(genetic_data.index[:20])
|
99 |
+
# The identifiers in format '11715100_at' appear to be Affymetrix probeset IDs
|
100 |
+
# rather than standard human gene symbols. They will need to be mapped to gene symbols.
|
101 |
+
requires_gene_mapping = True
|
102 |
+
# 1. Extract gene annotation data from SOFT file
|
103 |
+
gene_annotation = get_gene_annotation(soft_file_path)
|
104 |
+
|
105 |
+
# 2. Preview annotation data
|
106 |
+
print("Column names and first few values in gene annotation data:")
|
107 |
+
print(preview_df(gene_annotation))
|
108 |
+
# 1. Identify columns for mapping
|
109 |
+
# In the annotation data, 'ID' contains the same probe IDs as in gene_expression data
|
110 |
+
# 'Gene Symbol' contains the corresponding gene symbols
|
111 |
+
prob_col = 'ID'
|
112 |
+
gene_col = 'Gene Symbol'
|
113 |
+
|
114 |
+
# 2. Get mapping between probe IDs and gene symbols
|
115 |
+
mapping_data = get_gene_mapping(gene_annotation, prob_col, gene_col)
|
116 |
+
|
117 |
+
# 3. Apply mapping to convert probe-level data to gene-level data
|
118 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_data)
|
119 |
+
# 1. Normalize gene symbols and save gene data
|
120 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
121 |
+
gene_data.to_csv(out_gene_data_file)
|
122 |
+
|
123 |
+
# 2. Link clinical and genetic data
|
124 |
+
linked_data = geo_link_clinical_genetic_data(clinical_data_processed, gene_data)
|
125 |
+
|
126 |
+
# 3. Handle missing values
|
127 |
+
linked_data = handle_missing_values(linked_data, trait)
|
128 |
+
|
129 |
+
# 4. Judge if features are biased
|
130 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
131 |
+
|
132 |
+
# 5. Save cohort information
|
133 |
+
is_usable = validate_and_save_cohort_info(
|
134 |
+
is_final=True,
|
135 |
+
cohort=cohort,
|
136 |
+
info_path=json_path,
|
137 |
+
is_gene_available=True,
|
138 |
+
is_trait_available=True,
|
139 |
+
is_biased=trait_biased,
|
140 |
+
df=linked_data,
|
141 |
+
note="Expression array data of NASH-HCC patients and NASH controls. No age/gender information available."
|
142 |
+
)
|
143 |
+
|
144 |
+
# 6. Save linked data if usable
|
145 |
+
if is_usable:
|
146 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Liver_Cancer/code/GSE174570.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Liver_Cancer"
|
6 |
+
cohort = "GSE174570"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Liver_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Liver_Cancer/GSE174570"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Liver_Cancer/GSE174570.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Liver_Cancer/gene_data/GSE174570.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Liver_Cancer/clinical_data/GSE174570.csv"
|
16 |
+
json_path = "./output/preprocess/3/Liver_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths for soft and matrix files
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data from matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values for each clinical feature row
|
25 |
+
clinical_features = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Background Information:")
|
29 |
+
print(background_info)
|
30 |
+
print("\nClinical Features and Sample Values:")
|
31 |
+
print(json.dumps(clinical_features, indent=2))
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# Yes - using Affymetrix Human Genome U219 Array
|
34 |
+
is_gene_available = True
|
35 |
+
|
36 |
+
# 2. Variable Availability and Data Type Conversion
|
37 |
+
# Disease state (trait) is in row 0, has two values (HCC vs control)
|
38 |
+
trait_row = 0
|
39 |
+
|
40 |
+
# Age and gender not available in characteristics
|
41 |
+
age_row = None
|
42 |
+
gender_row = None
|
43 |
+
|
44 |
+
# Convert disease state to binary (HCC = 1, Non-tumour/control = 0)
|
45 |
+
def convert_trait(value):
|
46 |
+
if not isinstance(value, str):
|
47 |
+
return None
|
48 |
+
value = value.lower().split(': ')[-1]
|
49 |
+
if 'hcc' in value:
|
50 |
+
return 1
|
51 |
+
return 0
|
52 |
+
|
53 |
+
def convert_age(value):
|
54 |
+
return None
|
55 |
+
|
56 |
+
def convert_gender(value):
|
57 |
+
return None
|
58 |
+
|
59 |
+
# 3. Save metadata
|
60 |
+
is_trait_available = trait_row is not None
|
61 |
+
validate_and_save_cohort_info(is_final=False,
|
62 |
+
cohort=cohort,
|
63 |
+
info_path=json_path,
|
64 |
+
is_gene_available=is_gene_available,
|
65 |
+
is_trait_available=is_trait_available)
|
66 |
+
|
67 |
+
# 4. Extract clinical features
|
68 |
+
if trait_row is not None:
|
69 |
+
selected_clinical = geo_select_clinical_features(clinical_data,
|
70 |
+
trait=trait,
|
71 |
+
trait_row=trait_row,
|
72 |
+
convert_trait=convert_trait,
|
73 |
+
age_row=age_row,
|
74 |
+
convert_age=convert_age,
|
75 |
+
gender_row=gender_row,
|
76 |
+
convert_gender=convert_gender)
|
77 |
+
|
78 |
+
print("Preview of selected clinical features:")
|
79 |
+
print(preview_df(selected_clinical))
|
80 |
+
|
81 |
+
selected_clinical.to_csv(out_clinical_data_file)
|
p3/preprocess/Liver_Cancer/code/GSE178201.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Liver_Cancer"
|
6 |
+
cohort = "GSE178201"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Liver_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Liver_Cancer/GSE178201"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Liver_Cancer/GSE178201.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Liver_Cancer/gene_data/GSE178201.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Liver_Cancer/clinical_data/GSE178201.csv"
|
16 |
+
json_path = "./output/preprocess/3/Liver_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths for soft and matrix files
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Get background info and clinical data from matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values for each clinical feature row
|
25 |
+
clinical_features = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Background Information:")
|
29 |
+
print(background_info)
|
30 |
+
print("\nClinical Features and Sample Values:")
|
31 |
+
print(json.dumps(clinical_features, indent=2))
|
32 |
+
# 1. Gene Expression Data Availability
|
33 |
+
# Based on background info, this dataset does contain gene expression data (L1000 platform)
|
34 |
+
is_gene_available = True
|
35 |
+
|
36 |
+
# 2.1 Data Availability
|
37 |
+
# Looking at sample characteristics, there is no trait (cancer status), age or gender info
|
38 |
+
# These are cell line experiments, not patient samples
|
39 |
+
trait_row = None
|
40 |
+
age_row = None
|
41 |
+
gender_row = None
|
42 |
+
|
43 |
+
# 2.2 Data Type Conversion Functions
|
44 |
+
# Not needed since we have no clinical data, but defining empty functions to satisfy interface
|
45 |
+
def convert_trait(x):
|
46 |
+
return None
|
47 |
+
|
48 |
+
def convert_age(x):
|
49 |
+
return None
|
50 |
+
|
51 |
+
def convert_gender(x):
|
52 |
+
return None
|
53 |
+
|
54 |
+
# 3. Save Metadata
|
55 |
+
# Initial filtering - trait data not available (cell lines)
|
56 |
+
_ = validate_and_save_cohort_info(
|
57 |
+
is_final=False,
|
58 |
+
cohort=cohort,
|
59 |
+
info_path=json_path,
|
60 |
+
is_gene_available=is_gene_available,
|
61 |
+
is_trait_available=False
|
62 |
+
)
|
63 |
+
|
64 |
+
# 4. Clinical Feature Extraction
|
65 |
+
# Skip since trait_row is None (no clinical data available)
|
66 |
+
# Extract gene expression data from matrix file
|
67 |
+
genetic_data = get_genetic_data(matrix_file)
|
68 |
+
|
69 |
+
# Print DataFrame info and dimensions to verify data structure
|
70 |
+
print("DataFrame info:")
|
71 |
+
print(genetic_data.info())
|
72 |
+
print("\nDataFrame dimensions:", genetic_data.shape)
|
73 |
+
|
74 |
+
# Print an excerpt of the data to inspect row/column structure
|
75 |
+
print("\nFirst few rows and columns of data:")
|
76 |
+
print(genetic_data.head().iloc[:, :5])
|
77 |
+
|
78 |
+
# Print first 20 row IDs
|
79 |
+
print("\nFirst 20 gene/probe IDs:")
|
80 |
+
print(genetic_data.index[:20].tolist())
|
81 |
+
# The row index values appear to be Entrez Gene IDs
|
82 |
+
# These are numerical identifiers that need to be mapped to human gene symbols
|
83 |
+
requires_gene_mapping = True
|
84 |
+
# Extract gene annotation data
|
85 |
+
gene_annotation = get_gene_annotation(soft_file)
|
86 |
+
|
87 |
+
# Preview the annotation data structure
|
88 |
+
print("Gene Annotation Preview:")
|
89 |
+
print("\nColumns:", gene_annotation.columns.tolist())
|
90 |
+
preview = preview_df(gene_annotation)
|
91 |
+
print(json.dumps(preview, indent=2))
|
92 |
+
|
93 |
+
# Get mapping between probe IDs and gene symbols
|
94 |
+
prob_col = 'ID' # Column containing probe IDs
|
95 |
+
gene_col = 'pr_gene_symbol' # Column containing gene symbols
|
96 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)
|
97 |
+
|
98 |
+
# Preview the mapping
|
99 |
+
print("\nGene Mapping Preview:")
|
100 |
+
mapping_preview = preview_df(mapping_df)
|
101 |
+
print(json.dumps(mapping_preview, indent=2))
|
102 |
+
# Apply gene mapping to convert probe IDs to gene symbols
|
103 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_df)
|
104 |
+
|
105 |
+
# Print DataFrame info and preview to verify mapping result
|
106 |
+
print("Gene Expression Data After Mapping:")
|
107 |
+
print("\nDataFrame info:")
|
108 |
+
print(gene_data.info())
|
109 |
+
print("\nDataFrame dimensions:", gene_data.shape)
|
110 |
+
print("\nFirst few rows and columns:")
|
111 |
+
print(gene_data.head().iloc[:, :5])
|
112 |
+
print("\nFirst 20 gene symbols:")
|
113 |
+
print(gene_data.index[:20].tolist())
|
114 |
+
# 1. Normalize gene symbols and save gene data
|
115 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
116 |
+
gene_data.to_csv(out_gene_data_file)
|
117 |
+
|
118 |
+
# Create an empty DataFrame for mock validation
|
119 |
+
mock_df = pd.DataFrame({
|
120 |
+
trait: [0,1], # Mock trait values
|
121 |
+
'GENE1': [0,0] # Mock gene values
|
122 |
+
})
|
123 |
+
|
124 |
+
# Mark dataset as not usable in final validation due to lack of trait data
|
125 |
+
is_usable = validate_and_save_cohort_info(
|
126 |
+
is_final=True,
|
127 |
+
cohort=cohort,
|
128 |
+
info_path=json_path,
|
129 |
+
is_gene_available=True,
|
130 |
+
is_trait_available=False,
|
131 |
+
is_biased=True, # Consider lack of trait data as biased
|
132 |
+
df=mock_df,
|
133 |
+
note="Cell line data without clinical trait information - not suitable for trait association analysis"
|
134 |
+
)
|
135 |
+
|
136 |
+
# No linked data to save since data is not usable
|