File size: 7,551 Bytes
7623c74 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "LDL_Cholesterol_Levels"
# Input paths
tcga_root_dir = "../DATA/TCGA"
# Output paths
out_data_file = "./output/preprocess/3/LDL_Cholesterol_Levels/TCGA.csv"
out_gene_data_file = "./output/preprocess/3/LDL_Cholesterol_Levels/gene_data/TCGA.csv"
out_clinical_data_file = "./output/preprocess/3/LDL_Cholesterol_Levels/clinical_data/TCGA.csv"
json_path = "./output/preprocess/3/LDL_Cholesterol_Levels/cohort_info.json"
# Cannot proceed with column identification without first having access to
# the column names from the previous step's output
# For now, define empty candidates
candidate_age_cols = []
candidate_gender_cols = []
preview_dict = {}
preview_dict
# 1. From the subdirectories list, none contain terms directly related to LDL cholesterol or lipid levels
# Therefore, we need to examine a proxy tissue/condition most related to cholesterol metabolism
# The liver is the primary organ for cholesterol metabolism, so we'll use liver cancer data
cohort_dir = os.path.join(tcga_root_dir, 'TCGA_Liver_Cancer_(LIHC)')
# 2. Get the clinical and genetic data file paths
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
# 3. Load the data files
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
# 4. Print clinical data columns
print("Clinical data columns:")
print(clinical_df.columns.tolist())
# Define candidate columns
candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth', 'year_of_initial_pathologic_diagnosis']
candidate_gender_cols = ['gender']
# Use LIHC (Liver Cancer) data
cohort_dir = os.path.join(tcga_root_dir, "TCGA_Liver_Cancer_(LIHC)")
# Get clinical data path
clinical_file_path, _ = tcga_get_relevant_filepaths(cohort_dir)
clinical_df = pd.read_csv(clinical_file_path, index_col=0)
# Preview age columns
age_preview = {}
for col in candidate_age_cols:
if col in clinical_df.columns:
age_preview[col] = clinical_df[col].head(5).tolist()
print("Age columns preview:", age_preview)
# Preview gender columns
gender_preview = {}
for col in candidate_gender_cols:
if col in clinical_df.columns:
gender_preview[col] = clinical_df[col].head(5).tolist()
print("\nGender columns preview:", gender_preview)
# Information from previous step
# Dictionaries containing sample values from candidate columns
age_candidates = {'age_at_initial_pathologic_diagnosis': [63, 53, 69, 65, 59], 'age_began_smoking_in_years': ['[Not Applicable]', '[Not Available]', '[Not Available]', '[Not Available]', '[Not Applicable]']}
gender_candidates = {'gender': ['FEMALE', 'FEMALE', 'FEMALE', 'MALE', 'MALE']}
# Select age column - choose 'age_at_initial_pathologic_diagnosis' as it has valid numeric values
age_col = 'age_at_initial_pathologic_diagnosis' if 'age_at_initial_pathologic_diagnosis' in age_candidates and all(isinstance(x, (int, float)) for x in age_candidates['age_at_initial_pathologic_diagnosis']) else None
# Select gender column - choose 'gender' if it contains valid gender values
gender_col = 'gender' if 'gender' in gender_candidates and all(isinstance(x, str) and x.upper() in ['MALE', 'FEMALE'] for x in gender_candidates['gender']) else None
# Print chosen columns
print(f"Selected age column: {age_col}")
print(f"Selected gender column: {gender_col}")
# 1. Extract and standardize clinical features
# First reload data with correct separator
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
# Use days_to_birth as a source for age calculation since LDL is a continuous trait
age_values = (-clinical_df['days_to_birth']/365).round()
age_values = age_values.fillna(age_values.mean()).astype(int)
clinical_df['age_at_initial_pathologic_diagnosis'] = age_values
selected_clinical_df = tcga_select_clinical_features(clinical_df, trait, age_col=age_col, gender_col=gender_col)
# 2. Normalize gene symbols
normalized_gene_df = normalize_gene_symbols_in_index(genetic_df)
# Save normalized gene data
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_df.to_csv(out_gene_data_file)
# 3. Link clinical and genetic data
linked_data = pd.concat([selected_clinical_df, normalized_gene_df.T], axis=1)
# 4. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 5. Check for biased features and remove biased demographic features
is_trait_biased, cleaned_data = judge_and_remove_biased_features(linked_data, trait)
# 6. Validate data quality and save cohort info
note = "Data from TCGA Liver Cancer cohort used as proxy for LDL cholesterol studies due to liver's role in cholesterol metabolism. Age was calculated from days_to_birth for more accurate values."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort="TCGA_LIHC",
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_trait_biased,
df=cleaned_data,
note=note
)
# 7. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
cleaned_data.to_csv(out_data_file)
print(f"Data saved to {out_data_file}")
else:
print("Data quality validation failed. Dataset not saved.")
# 1. Extract and standardize clinical features
# First reload data with correct separator
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
# Define demographic columns based on inspection from previous steps
age_col = 'age_at_initial_pathologic_diagnosis'
gender_col = 'gender'
# Calculate age from days_to_birth for more accuracy
age_values = (-clinical_df['days_to_birth']/365).round()
age_values = age_values.fillna(age_values.mean()).astype(int)
clinical_df[age_col] = age_values
selected_clinical_df = tcga_select_clinical_features(clinical_df, trait, age_col=age_col, gender_col=gender_col)
# 2. Normalize gene symbols
normalized_gene_df = normalize_gene_symbols_in_index(genetic_df)
# Save normalized gene data
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_df.to_csv(out_gene_data_file)
# 3. Link clinical and genetic data
linked_data = pd.concat([selected_clinical_df, normalized_gene_df.T], axis=1)
# 4. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 5. Check for biased features and remove biased demographic features
is_trait_biased, cleaned_data = judge_and_remove_biased_features(linked_data, trait)
# 6. Validate data quality and save cohort info
note = "Data from TCGA Liver Cancer cohort used as proxy for LDL cholesterol studies due to liver's role in cholesterol metabolism. Age was calculated from days_to_birth for more accurate values."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort="TCGA_LIHC",
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_trait_biased,
df=cleaned_data,
note=note
)
# 7. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
cleaned_data.to_csv(out_data_file)
print(f"Data saved to {out_data_file}")
else:
print("Data quality validation failed. Dataset not saved.") |