File size: 7,551 Bytes
7623c74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "LDL_Cholesterol_Levels"

# Input paths
tcga_root_dir = "../DATA/TCGA"

# Output paths
out_data_file = "./output/preprocess/3/LDL_Cholesterol_Levels/TCGA.csv"
out_gene_data_file = "./output/preprocess/3/LDL_Cholesterol_Levels/gene_data/TCGA.csv"
out_clinical_data_file = "./output/preprocess/3/LDL_Cholesterol_Levels/clinical_data/TCGA.csv"
json_path = "./output/preprocess/3/LDL_Cholesterol_Levels/cohort_info.json"

# Cannot proceed with column identification without first having access to 
# the column names from the previous step's output

# For now, define empty candidates
candidate_age_cols = []  
candidate_gender_cols = []

preview_dict = {}
preview_dict
# 1. From the subdirectories list, none contain terms directly related to LDL cholesterol or lipid levels
# Therefore, we need to examine a proxy tissue/condition most related to cholesterol metabolism
# The liver is the primary organ for cholesterol metabolism, so we'll use liver cancer data
cohort_dir = os.path.join(tcga_root_dir, 'TCGA_Liver_Cancer_(LIHC)')

# 2. Get the clinical and genetic data file paths
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)

# 3. Load the data files
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')

# 4. Print clinical data columns
print("Clinical data columns:")
print(clinical_df.columns.tolist())
# Define candidate columns
candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth', 'year_of_initial_pathologic_diagnosis']
candidate_gender_cols = ['gender']

# Use LIHC (Liver Cancer) data
cohort_dir = os.path.join(tcga_root_dir, "TCGA_Liver_Cancer_(LIHC)")

# Get clinical data path
clinical_file_path, _ = tcga_get_relevant_filepaths(cohort_dir)
clinical_df = pd.read_csv(clinical_file_path, index_col=0)

# Preview age columns
age_preview = {}
for col in candidate_age_cols:
    if col in clinical_df.columns:
        age_preview[col] = clinical_df[col].head(5).tolist()
print("Age columns preview:", age_preview)

# Preview gender columns 
gender_preview = {}
for col in candidate_gender_cols:
    if col in clinical_df.columns:
        gender_preview[col] = clinical_df[col].head(5).tolist()
print("\nGender columns preview:", gender_preview)
# Information from previous step
# Dictionaries containing sample values from candidate columns
age_candidates = {'age_at_initial_pathologic_diagnosis': [63, 53, 69, 65, 59], 'age_began_smoking_in_years': ['[Not Applicable]', '[Not Available]', '[Not Available]', '[Not Available]', '[Not Applicable]']}
gender_candidates = {'gender': ['FEMALE', 'FEMALE', 'FEMALE', 'MALE', 'MALE']}

# Select age column - choose 'age_at_initial_pathologic_diagnosis' as it has valid numeric values
age_col = 'age_at_initial_pathologic_diagnosis' if 'age_at_initial_pathologic_diagnosis' in age_candidates and all(isinstance(x, (int, float)) for x in age_candidates['age_at_initial_pathologic_diagnosis']) else None

# Select gender column - choose 'gender' if it contains valid gender values
gender_col = 'gender' if 'gender' in gender_candidates and all(isinstance(x, str) and x.upper() in ['MALE', 'FEMALE'] for x in gender_candidates['gender']) else None

# Print chosen columns
print(f"Selected age column: {age_col}")
print(f"Selected gender column: {gender_col}")
# 1. Extract and standardize clinical features
# First reload data with correct separator
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')

# Use days_to_birth as a source for age calculation since LDL is a continuous trait
age_values = (-clinical_df['days_to_birth']/365).round()
age_values = age_values.fillna(age_values.mean()).astype(int)
clinical_df['age_at_initial_pathologic_diagnosis'] = age_values

selected_clinical_df = tcga_select_clinical_features(clinical_df, trait, age_col=age_col, gender_col=gender_col)

# 2. Normalize gene symbols
normalized_gene_df = normalize_gene_symbols_in_index(genetic_df)

# Save normalized gene data
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_df.to_csv(out_gene_data_file)

# 3. Link clinical and genetic data
linked_data = pd.concat([selected_clinical_df, normalized_gene_df.T], axis=1)

# 4. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 5. Check for biased features and remove biased demographic features
is_trait_biased, cleaned_data = judge_and_remove_biased_features(linked_data, trait)

# 6. Validate data quality and save cohort info
note = "Data from TCGA Liver Cancer cohort used as proxy for LDL cholesterol studies due to liver's role in cholesterol metabolism. Age was calculated from days_to_birth for more accurate values."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort="TCGA_LIHC",
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_trait_biased,
    df=cleaned_data,
    note=note
)

# 7. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    cleaned_data.to_csv(out_data_file)
    print(f"Data saved to {out_data_file}")
else:
    print("Data quality validation failed. Dataset not saved.")
# 1. Extract and standardize clinical features
# First reload data with correct separator
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')

# Define demographic columns based on inspection from previous steps
age_col = 'age_at_initial_pathologic_diagnosis'
gender_col = 'gender'

# Calculate age from days_to_birth for more accuracy
age_values = (-clinical_df['days_to_birth']/365).round()
age_values = age_values.fillna(age_values.mean()).astype(int)
clinical_df[age_col] = age_values

selected_clinical_df = tcga_select_clinical_features(clinical_df, trait, age_col=age_col, gender_col=gender_col)

# 2. Normalize gene symbols
normalized_gene_df = normalize_gene_symbols_in_index(genetic_df)

# Save normalized gene data
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_df.to_csv(out_gene_data_file)

# 3. Link clinical and genetic data
linked_data = pd.concat([selected_clinical_df, normalized_gene_df.T], axis=1)

# 4. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 5. Check for biased features and remove biased demographic features
is_trait_biased, cleaned_data = judge_and_remove_biased_features(linked_data, trait)

# 6. Validate data quality and save cohort info
note = "Data from TCGA Liver Cancer cohort used as proxy for LDL cholesterol studies due to liver's role in cholesterol metabolism. Age was calculated from days_to_birth for more accurate values."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort="TCGA_LIHC",
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_trait_biased,
    df=cleaned_data,
    note=note
)

# 7. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    cleaned_data.to_csv(out_data_file)
    print(f"Data saved to {out_data_file}")
else:
    print("Data quality validation failed. Dataset not saved.")