File size: 5,314 Bytes
f811ee7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Lactose_Intolerance"
cohort = "GSE138297"

# Input paths
in_trait_dir = "../DATA/GEO/Lactose_Intolerance"
in_cohort_dir = "../DATA/GEO/Lactose_Intolerance/GSE138297"

# Output paths
out_data_file = "./output/preprocess/3/Lactose_Intolerance/GSE138297.csv"
out_gene_data_file = "./output/preprocess/3/Lactose_Intolerance/gene_data/GSE138297.csv"
out_clinical_data_file = "./output/preprocess/3/Lactose_Intolerance/clinical_data/GSE138297.csv"
json_path = "./output/preprocess/3/Lactose_Intolerance/cohort_info.json"

# Get file paths for soft and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values for each clinical feature row 
clinical_features = get_unique_values_by_row(clinical_data)

# Print background info
print("Background Information:")
print(background_info)
print("\nClinical Features and Sample Values:")
print(json.dumps(clinical_features, indent=2))
# 1. Gene Expression Data Availability
# Based on background info mentioning "Microarray analysis", gene expression data is available
is_gene_available = True

# 2. Variable Availability and Data Type Conversion
# Trait can be inferred from experimental condition (autologous vs allogenic)
trait_row = 6

def convert_trait(value):
    # Extract value after colon
    if ':' in value:
        value = value.split(':', 1)[1].strip()
    # Convert to binary: autologous = 0 (control), allogenic = 1 (treated)
    if 'Autologous' in value:
        return 0
    elif 'Allogenic' in value:  
        return 1
    return None

# Age is available in row 3
age_row = 3

def convert_age(value):
    if ':' in value:
        value = value.split(':', 1)[1].strip()
        try:
            return float(value) 
        except:
            return None
    return None

# Gender is available in row 1
gender_row = 1

def convert_gender(value):
    if ':' in value:
        value = value.split(':', 1)[1].strip()
        try:
            # Data already coded as female=1, male=0
            # But we need to reverse it to match our convention (female=0, male=1)
            return 1 - int(value)
        except:
            return None
    return None

# 3. Save initial metadata
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=trait_row is not None)

# 4. Extract clinical features since trait_row is not None
selected_clinical = geo_select_clinical_features(clinical_df=clinical_data,
                                              trait=trait,
                                              trait_row=trait_row,
                                              convert_trait=convert_trait,
                                              age_row=age_row,
                                              convert_age=convert_age, 
                                              gender_row=gender_row,
                                              convert_gender=convert_gender)

# Preview results
print(preview_df(selected_clinical))

# Save clinical data
selected_clinical.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file)

# Print first 20 row IDs
print("First 20 gene/probe IDs:")
print(genetic_data.index[:20].tolist())
# Review the IDs - they appear to be probe IDs, not human gene symbols
# The format looks like Illumina probe IDs that need to be mapped to gene symbols
requires_gene_mapping = True
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file)

# Preview column names and first few values
print("Gene Annotation Preview:")
print(preview_df(gene_annotation))
# Extract gene mapping from annotation data 
# 'ID' column matches probe IDs in expression data
# 'gene_assignment' column contains gene symbols
mapping_data = get_gene_mapping(gene_annotation, 'ID', 'gene_assignment')

# Apply mapping to convert probe measurements to gene expression
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(df=linked_data, trait_col=trait)

# 4. Check for biases and remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Validate dataset quality and save metadata
note = ""
if is_biased:
    note = "The trait distribution is severely biased."

is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note=note
)

# 6. Save linked data if usable
if is_usable:
    linked_data.to_csv(out_data_file)