File size: 5,314 Bytes
f811ee7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Lactose_Intolerance"
cohort = "GSE138297"
# Input paths
in_trait_dir = "../DATA/GEO/Lactose_Intolerance"
in_cohort_dir = "../DATA/GEO/Lactose_Intolerance/GSE138297"
# Output paths
out_data_file = "./output/preprocess/3/Lactose_Intolerance/GSE138297.csv"
out_gene_data_file = "./output/preprocess/3/Lactose_Intolerance/gene_data/GSE138297.csv"
out_clinical_data_file = "./output/preprocess/3/Lactose_Intolerance/clinical_data/GSE138297.csv"
json_path = "./output/preprocess/3/Lactose_Intolerance/cohort_info.json"
# Get file paths for soft and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values for each clinical feature row
clinical_features = get_unique_values_by_row(clinical_data)
# Print background info
print("Background Information:")
print(background_info)
print("\nClinical Features and Sample Values:")
print(json.dumps(clinical_features, indent=2))
# 1. Gene Expression Data Availability
# Based on background info mentioning "Microarray analysis", gene expression data is available
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# Trait can be inferred from experimental condition (autologous vs allogenic)
trait_row = 6
def convert_trait(value):
# Extract value after colon
if ':' in value:
value = value.split(':', 1)[1].strip()
# Convert to binary: autologous = 0 (control), allogenic = 1 (treated)
if 'Autologous' in value:
return 0
elif 'Allogenic' in value:
return 1
return None
# Age is available in row 3
age_row = 3
def convert_age(value):
if ':' in value:
value = value.split(':', 1)[1].strip()
try:
return float(value)
except:
return None
return None
# Gender is available in row 1
gender_row = 1
def convert_gender(value):
if ':' in value:
value = value.split(':', 1)[1].strip()
try:
# Data already coded as female=1, male=0
# But we need to reverse it to match our convention (female=0, male=1)
return 1 - int(value)
except:
return None
return None
# 3. Save initial metadata
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None)
# 4. Extract clinical features since trait_row is not None
selected_clinical = geo_select_clinical_features(clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender)
# Preview results
print(preview_df(selected_clinical))
# Save clinical data
selected_clinical.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file)
# Print first 20 row IDs
print("First 20 gene/probe IDs:")
print(genetic_data.index[:20].tolist())
# Review the IDs - they appear to be probe IDs, not human gene symbols
# The format looks like Illumina probe IDs that need to be mapped to gene symbols
requires_gene_mapping = True
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file)
# Preview column names and first few values
print("Gene Annotation Preview:")
print(preview_df(gene_annotation))
# Extract gene mapping from annotation data
# 'ID' column matches probe IDs in expression data
# 'gene_assignment' column contains gene symbols
mapping_data = get_gene_mapping(gene_annotation, 'ID', 'gene_assignment')
# Apply mapping to convert probe measurements to gene expression
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(df=linked_data, trait_col=trait)
# 4. Check for biases and remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate dataset quality and save metadata
note = ""
if is_biased:
note = "The trait distribution is severely biased."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note=note
)
# 6. Save linked data if usable
if is_usable:
linked_data.to_csv(out_data_file) |