File size: 5,660 Bytes
7623c74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Large_B-cell_Lymphoma"
cohort = "GSE159472"

# Input paths
in_trait_dir = "../DATA/GEO/Large_B-cell_Lymphoma"
in_cohort_dir = "../DATA/GEO/Large_B-cell_Lymphoma/GSE159472"

# Output paths
out_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/GSE159472.csv"
out_gene_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/gene_data/GSE159472.csv"
out_clinical_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/clinical_data/GSE159472.csv"
json_path = "./output/preprocess/3/Large_B-cell_Lymphoma/cohort_info.json"

# Get file paths for soft and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values for each clinical feature row 
clinical_features = get_unique_values_by_row(clinical_data)

# Print background info
print("Background Information:")
print(background_info)
print("\nClinical Features and Sample Values:")
print(json.dumps(clinical_features, indent=2))
# 1. Gene Expression Availability
# Based on background info and series title, this is a microarray expression data for DLBCL
is_gene_available = True 

# 2. Variable Availability and Data Type Conversion
# 2.1 Row Numbers
# Trait (ABC/GCB subtypes) is in row 2
trait_row = 2
# Age and gender not available in characteristics
age_row = None
gender_row = None

# 2.2 Conversion Functions
def convert_trait(x):
    """Convert DLBCL subtype to binary: ABC=1, GCB=0"""
    try:
        if not isinstance(x, str):
            return None
        x = x.split(': ')[1].strip()
        if 'ABC' in x:
            return 1
        elif 'GCB' in x:
            return 0
        return None
    except:
        return None

def convert_age(x):
    return None

def convert_gender(x):
    return None

# 3. Save initial metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=is_trait_available)

# 4. Extract clinical features since trait data is available
if trait_row is not None:
    clinical_features = geo_select_clinical_features(
        clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the extracted features
    print("Preview of clinical features:")
    print(preview_df(clinical_features))
    
    # Save to CSV
    clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file)

# Print DataFrame info and dimensions to verify data structure
print("DataFrame info:")
print(genetic_data.info())
print("\nDataFrame dimensions:", genetic_data.shape)

# Print an excerpt of the data to inspect row/column structure
print("\nFirst few rows and columns of data:")
print(genetic_data.head().iloc[:, :5])

# Print first 20 row IDs
print("\nFirst 20 gene/probe IDs:")
print(genetic_data.index[:20].tolist())
# Review gene identifiers - these appear to be Affymetrix probe IDs (e.g. "1007_s_at")
# rather than standard human gene symbols, so mapping will be required
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file)

# Print information about annotation data
print("Gene Annotation Preview:")
print("\nDataFrame Shape:", gene_annotation.shape)
print("\nColumn Names:")
print(gene_annotation.columns.tolist())
print("\nFirst few rows preview:")
print(preview_df(gene_annotation))
# Get mapping between gene IDs and gene symbols from annotation data
# 'ID' column matches probe IDs in expression data, 'Gene Symbol' contains human gene symbols
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')

# Apply mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# Print info about the resulting gene expression data
print("Gene expression data shape after mapping:", gene_data.shape)
print("\nFirst few mapped genes and their expression values:")
print(gene_data.head().iloc[:, :5])
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data 
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)

# Debug print to check data before handling missing values
print("\nPreview of linked data before handling missing values:")
print(linked_data.head())

# 3. Handle missing values
linked_data = handle_missing_values(df=linked_data, trait_col=trait)

print("\nPreview of linked data after handling missing values:")
print(linked_data.head())

# 4. Check for biases and remove biased demographic features 
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Validate dataset quality and save metadata
note = ""
if is_biased:
    note = "The trait distribution is severely biased."

is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note=note
)

# 6. Save linked data if usable
if is_usable:
    linked_data.to_csv(out_data_file)