File size: 4,152 Bytes
7623c74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Large_B-cell_Lymphoma"
cohort = "GSE243973"

# Input paths
in_trait_dir = "../DATA/GEO/Large_B-cell_Lymphoma"
in_cohort_dir = "../DATA/GEO/Large_B-cell_Lymphoma/GSE243973"

# Output paths
out_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/GSE243973.csv"
out_gene_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/gene_data/GSE243973.csv"
out_clinical_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/clinical_data/GSE243973.csv"
json_path = "./output/preprocess/3/Large_B-cell_Lymphoma/cohort_info.json"

# Get file paths for soft and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values for each clinical feature row 
clinical_features = get_unique_values_by_row(clinical_data)

# Print background info
print("Background Information:")
print(background_info)
print("\nClinical Features and Sample Values:")
print(json.dumps(clinical_features, indent=2))
# 1. Gene Expression Data Availability
# Yes - Series summary mentions transcriptomic profiling
is_gene_available = True

# 2.1 Feature Key Identification
# Trait - Row 0 contains disease state info
trait_row = 0
# Age - Not available in characteristics 
age_row = None  
# Gender - Not available in characteristics
gender_row = None

# 2.2 Data Type Conversion Functions
def convert_trait(x: str) -> int:
    """Convert disease status to binary: 1 for LBCL, 0 for control"""
    if pd.isna(x):
        return None
    value = x.split(': ')[1].lower() if ': ' in x else x.lower()
    if 'large b-cell lymphoma' in value:
        return 1
    elif 'healthy control' in value:
        return 0
    return None

def convert_age(x: str) -> float:
    """Not used but defined for completeness"""
    return None

def convert_gender(x: str) -> int:
    """Not used but defined for completeness"""
    return None

# 3. Save Metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)

# 4. Extract Clinical Features
if trait_row is not None:
    clinical_features = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the data
    preview = preview_df(clinical_features)
    print("Clinical features preview:", preview)
    
    # Save to CSV
    clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file)

# Print first 20 row IDs
print("First 20 gene/probe IDs:")
print(genetic_data.index[:20].tolist())
# These appear to be standard human gene symbols (HGNC format)
# e.g. ABCF1, ACACA, ADAR are well-known human gene symbols
# No mapping needed as they are already in the correct format
requires_gene_mapping = False
# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(genetic_data)
genetic_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_features, genetic_data)

# 3. Handle missing values
linked_data = handle_missing_values(df=linked_data, trait_col=trait)

# 4. Check for biases and remove biased demographic features 
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Validate dataset quality and save metadata
note = ""
if is_biased:
    note = "The trait distribution is severely biased."

is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note=note
)

# 6. Save linked data if usable
if is_usable:
    linked_data.to_csv(out_data_file)