File size: 6,414 Bytes
7623c74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Large_B-cell_Lymphoma"

# Input paths
tcga_root_dir = "../DATA/TCGA"

# Output paths
out_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/TCGA.csv"
out_gene_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/gene_data/TCGA.csv"
out_clinical_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/clinical_data/TCGA.csv"
json_path = "./output/preprocess/3/Large_B-cell_Lymphoma/cohort_info.json"

# 1. From the subdirectories list, select Large B-cell Lymphoma (DLBC) data since it matches our target trait
cohort_dir = os.path.join(tcga_root_dir, 'TCGA_Large_Bcell_Lymphoma_(DLBC)')

# 2. Get the clinical and genetic data file paths 
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)

# 3. Load the data files
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')

# 4. Print clinical data columns
print("Clinical data columns:")
print(clinical_df.columns.tolist())
# First check available directories
import os
print("Available directories:", os.listdir(tcga_root_dir))

# Define candidate columns for age and gender
candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth']
candidate_gender_cols = ['gender']

# Large B-cell Lymphoma corresponds to DLBC (Diffuse Large B-Cell Lymphoma) in TCGA nomenclature
cohort_dir = [os.path.join(tcga_root_dir, d) for d in os.listdir(tcga_root_dir) 
              if "DLBC" in d][0]

# Get clinical data file path
clinical_file_path, _ = tcga_get_relevant_filepaths(cohort_dir)

# Read clinical data 
clinical_df = pd.read_csv(clinical_file_path, index_col=0)

# Extract and preview age columns
age_preview = {}
for col in candidate_age_cols:
    age_preview[col] = clinical_df[col].head(5).tolist()
print("Age columns preview:", age_preview)

# Extract and preview gender columns 
gender_preview = {}
for col in candidate_gender_cols:
    gender_preview[col] = clinical_df[col].head(5).tolist()
print("\nGender columns preview:", gender_preview)
# Get the cohort directory path
cohort_dir = os.path.join(tcga_root_dir, "TCGA_Large_Bcell_Lymphoma_(DLBC)")

# Get clinical file path
clinical_file_path, _ = tcga_get_relevant_filepaths(cohort_dir)

# Read clinical data with tab separator
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')

# Extract candidate demographic columns
candidate_age_cols = ["age_at_initial_pathologic_diagnosis", "_age_at_initial_pathologic_diagnosis"] 
candidate_gender_cols = ["gender"]

# Preview candidate columns if they exist in the data
demo_preview = {}

if any(col in clinical_df.columns for col in candidate_age_cols):
    for col in candidate_age_cols:
        if col in clinical_df.columns:
            demo_preview[col] = clinical_df[col].head().tolist()

if any(col in clinical_df.columns for col in candidate_gender_cols):
    for col in candidate_gender_cols:
        if col in clinical_df.columns:
            demo_preview[col] = clinical_df[col].head().tolist()

print("candidate_age_cols =", candidate_age_cols)
print("candidate_gender_cols =", candidate_gender_cols)
print("\nPreview of demographic columns:")
print(demo_preview)
# Store the preview data
preview_dict = {'age_at_initial_pathologic_diagnosis': [75, 67, 40, 73, 58], 'gender': ['MALE', 'MALE', 'MALE', 'MALE', 'FEMALE']}

# Check age columns
age_col = None
if candidate_age_cols:
    # Select first age column that has valid age values
    for col in candidate_age_cols:
        if col in preview_dict and any(isinstance(x, (int, float)) or (isinstance(x, str) and str(x).strip().isdigit()) for x in preview_dict[col]):
            age_col = col
            break

# Check gender columns            
gender_col = None
if candidate_gender_cols:
    # Select first gender column that has valid gender values
    for col in candidate_gender_cols:
        if col in preview_dict and any(isinstance(x, str) and str(x).upper() in ['MALE', 'FEMALE'] for x in preview_dict[col]):
            gender_col = col
            break

# Print chosen columns
print(f"Selected age column: {age_col}")
print(f"Selected gender column: {gender_col}")
# 1. Extract and standardize clinical features
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')

# Define demographic columns based on inspection from previous steps
age_col = 'age_at_initial_pathologic_diagnosis'
gender_col = 'gender'

# Create a DataFrame with just the sample IDs to ensure proper trait encoding
sample_ids = pd.DataFrame(index=genetic_df.columns)
selected_clinical_df = tcga_select_clinical_features(sample_ids, trait, age_col=None, gender_col=None)

# Add age and gender from clinical data if available
if age_col in clinical_df.columns:
    selected_clinical_df['Age'] = clinical_df[age_col]
if gender_col in clinical_df.columns:
    selected_clinical_df['Gender'] = clinical_df[gender_col].apply(tcga_convert_gender)

# 2. Normalize gene symbols
normalized_gene_df = normalize_gene_symbols_in_index(genetic_df)

# Save normalized gene data
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_df.to_csv(out_gene_data_file)

# 3. Link clinical and genetic data
linked_data = pd.concat([selected_clinical_df, normalized_gene_df.T], axis=1)

# 4. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 5. Check for biased features and remove biased demographic features
is_trait_biased, cleaned_data = judge_and_remove_biased_features(linked_data, trait)

# 6. Validate data quality and save cohort info
note = "Data from TCGA Large B-cell Lymphoma (DLBC) cohort. Classification based on TCGA sample type codes (01-09: tumor, 10-19: normal)."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort="TCGA_DLBC",
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_trait_biased,
    df=cleaned_data,
    note=note
)

# 7. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    cleaned_data.to_csv(out_data_file)
    print(f"Data saved to {out_data_file}")
else:
    print("Data quality validation failed. Dataset not saved.")