File size: 6,414 Bytes
7623c74 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Large_B-cell_Lymphoma"
# Input paths
tcga_root_dir = "../DATA/TCGA"
# Output paths
out_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/TCGA.csv"
out_gene_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/gene_data/TCGA.csv"
out_clinical_data_file = "./output/preprocess/3/Large_B-cell_Lymphoma/clinical_data/TCGA.csv"
json_path = "./output/preprocess/3/Large_B-cell_Lymphoma/cohort_info.json"
# 1. From the subdirectories list, select Large B-cell Lymphoma (DLBC) data since it matches our target trait
cohort_dir = os.path.join(tcga_root_dir, 'TCGA_Large_Bcell_Lymphoma_(DLBC)')
# 2. Get the clinical and genetic data file paths
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
# 3. Load the data files
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
# 4. Print clinical data columns
print("Clinical data columns:")
print(clinical_df.columns.tolist())
# First check available directories
import os
print("Available directories:", os.listdir(tcga_root_dir))
# Define candidate columns for age and gender
candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth']
candidate_gender_cols = ['gender']
# Large B-cell Lymphoma corresponds to DLBC (Diffuse Large B-Cell Lymphoma) in TCGA nomenclature
cohort_dir = [os.path.join(tcga_root_dir, d) for d in os.listdir(tcga_root_dir)
if "DLBC" in d][0]
# Get clinical data file path
clinical_file_path, _ = tcga_get_relevant_filepaths(cohort_dir)
# Read clinical data
clinical_df = pd.read_csv(clinical_file_path, index_col=0)
# Extract and preview age columns
age_preview = {}
for col in candidate_age_cols:
age_preview[col] = clinical_df[col].head(5).tolist()
print("Age columns preview:", age_preview)
# Extract and preview gender columns
gender_preview = {}
for col in candidate_gender_cols:
gender_preview[col] = clinical_df[col].head(5).tolist()
print("\nGender columns preview:", gender_preview)
# Get the cohort directory path
cohort_dir = os.path.join(tcga_root_dir, "TCGA_Large_Bcell_Lymphoma_(DLBC)")
# Get clinical file path
clinical_file_path, _ = tcga_get_relevant_filepaths(cohort_dir)
# Read clinical data with tab separator
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
# Extract candidate demographic columns
candidate_age_cols = ["age_at_initial_pathologic_diagnosis", "_age_at_initial_pathologic_diagnosis"]
candidate_gender_cols = ["gender"]
# Preview candidate columns if they exist in the data
demo_preview = {}
if any(col in clinical_df.columns for col in candidate_age_cols):
for col in candidate_age_cols:
if col in clinical_df.columns:
demo_preview[col] = clinical_df[col].head().tolist()
if any(col in clinical_df.columns for col in candidate_gender_cols):
for col in candidate_gender_cols:
if col in clinical_df.columns:
demo_preview[col] = clinical_df[col].head().tolist()
print("candidate_age_cols =", candidate_age_cols)
print("candidate_gender_cols =", candidate_gender_cols)
print("\nPreview of demographic columns:")
print(demo_preview)
# Store the preview data
preview_dict = {'age_at_initial_pathologic_diagnosis': [75, 67, 40, 73, 58], 'gender': ['MALE', 'MALE', 'MALE', 'MALE', 'FEMALE']}
# Check age columns
age_col = None
if candidate_age_cols:
# Select first age column that has valid age values
for col in candidate_age_cols:
if col in preview_dict and any(isinstance(x, (int, float)) or (isinstance(x, str) and str(x).strip().isdigit()) for x in preview_dict[col]):
age_col = col
break
# Check gender columns
gender_col = None
if candidate_gender_cols:
# Select first gender column that has valid gender values
for col in candidate_gender_cols:
if col in preview_dict and any(isinstance(x, str) and str(x).upper() in ['MALE', 'FEMALE'] for x in preview_dict[col]):
gender_col = col
break
# Print chosen columns
print(f"Selected age column: {age_col}")
print(f"Selected gender column: {gender_col}")
# 1. Extract and standardize clinical features
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
# Define demographic columns based on inspection from previous steps
age_col = 'age_at_initial_pathologic_diagnosis'
gender_col = 'gender'
# Create a DataFrame with just the sample IDs to ensure proper trait encoding
sample_ids = pd.DataFrame(index=genetic_df.columns)
selected_clinical_df = tcga_select_clinical_features(sample_ids, trait, age_col=None, gender_col=None)
# Add age and gender from clinical data if available
if age_col in clinical_df.columns:
selected_clinical_df['Age'] = clinical_df[age_col]
if gender_col in clinical_df.columns:
selected_clinical_df['Gender'] = clinical_df[gender_col].apply(tcga_convert_gender)
# 2. Normalize gene symbols
normalized_gene_df = normalize_gene_symbols_in_index(genetic_df)
# Save normalized gene data
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_df.to_csv(out_gene_data_file)
# 3. Link clinical and genetic data
linked_data = pd.concat([selected_clinical_df, normalized_gene_df.T], axis=1)
# 4. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 5. Check for biased features and remove biased demographic features
is_trait_biased, cleaned_data = judge_and_remove_biased_features(linked_data, trait)
# 6. Validate data quality and save cohort info
note = "Data from TCGA Large B-cell Lymphoma (DLBC) cohort. Classification based on TCGA sample type codes (01-09: tumor, 10-19: normal)."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort="TCGA_DLBC",
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_trait_biased,
df=cleaned_data,
note=note
)
# 7. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
cleaned_data.to_csv(out_data_file)
print(f"Data saved to {out_data_file}")
else:
print("Data quality validation failed. Dataset not saved.") |