File size: 4,640 Bytes
7623c74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Liver_Cancer"
cohort = "GSE148346"

# Input paths
in_trait_dir = "../DATA/GEO/Liver_Cancer"
in_cohort_dir = "../DATA/GEO/Liver_Cancer/GSE148346"

# Output paths
out_data_file = "./output/preprocess/3/Liver_Cancer/GSE148346.csv"
out_gene_data_file = "./output/preprocess/3/Liver_Cancer/gene_data/GSE148346.csv"
out_clinical_data_file = "./output/preprocess/3/Liver_Cancer/clinical_data/GSE148346.csv"
json_path = "./output/preprocess/3/Liver_Cancer/cohort_info.json"

# Step 1: Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Step 2: Extract background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Step 3: Get dictionary of unique values for each clinical feature
unique_values_dict = get_unique_values_by_row(clinical_data)

# Step 4: Print background info and sample characteristics
print("Dataset Background Information:")
print("-" * 80)
print(background_info)
print("\nSample Characteristics:")
print("-" * 80)
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Based on the background information, this appears to be a biopsy study with gene expression analysis
is_gene_available = True

# 2. Variable Availability and Data Type Conversion
# For trait, we can use tissue disease state (key 3) which indicates lesional (LS) vs non-lesional (NL) liver tissue
trait_row = 3
def convert_trait(x: str) -> Optional[int]:
    if not isinstance(x, str):
        return None
    value = x.split(': ')[-1]
    if value == 'LS':
        return 1  # Lesional
    elif value == 'NL': 
        return 0  # Non-lesional
    return None

# No age information available
age_row = None
convert_age = None

# No gender information available 
gender_row = None 
convert_gender = None

# 3. Save metadata
is_trait_available = trait_row is not None
_ = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Clinical feature extraction
if trait_row is not None:
    selected_clinical = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the data
    print(preview_df(selected_clinical))
    
    # Save to file
    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
    selected_clinical.to_csv(out_clinical_data_file)
# 1. Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# 2. Print first 20 row IDs
print("First 20 gene/probe identifiers:")
print(genetic_data.index[:20])
# Those are Affymetrix probe IDs (_at suffix is characteristic of Affy arrays)
# They need to be mapped to gene symbols for consistency and interpretability
requires_gene_mapping = True
# 1. Extract gene annotation data from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)

# 2. Preview annotation data
print("Column names and first few values in gene annotation data:")
print(preview_df(gene_annotation))
# 1. Get gene mapping dataframe from annotation
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')

# 2. Apply mapping to convert probe level data to gene level data
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# Preview gene data
print("\nFirst 5 genes and 5 samples of gene expression data:")
print(gene_data.iloc[:5, :5])
# 1. Normalize gene symbols and save gene data
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Judge if features are biased
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Save cohort information 
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note="Expression array data of NASH-HCC patients and NASH controls. No age/gender information available."
)

# 6. Save linked data if usable
if is_usable:
    linked_data.to_csv(out_data_file)