File size: 4,956 Bytes
7623c74 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Liver_Cancer"
cohort = "GSE164760"
# Input paths
in_trait_dir = "../DATA/GEO/Liver_Cancer"
in_cohort_dir = "../DATA/GEO/Liver_Cancer/GSE164760"
# Output paths
out_data_file = "./output/preprocess/3/Liver_Cancer/GSE164760.csv"
out_gene_data_file = "./output/preprocess/3/Liver_Cancer/gene_data/GSE164760.csv"
out_clinical_data_file = "./output/preprocess/3/Liver_Cancer/clinical_data/GSE164760.csv"
json_path = "./output/preprocess/3/Liver_Cancer/cohort_info.json"
# Step 1: Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Step 2: Extract background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Step 3: Get dictionary of unique values for each clinical feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Step 4: Print background info and sample characteristics
print("Dataset Background Information:")
print("-" * 80)
print(background_info)
print("\nSample Characteristics:")
print("-" * 80)
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# According to the series title and summary, this dataset focuses on molecular characterization with expression arrays
is_gene_available = True
# 2.1 Data Availability
# - Trait (NASH-HCC vs non-tumoral) can be inferred from tissue type at row 0
trait_row = 0
# - Age is not available in sample characteristics
age_row = None
# - Gender is not available in sample characteristics
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> Optional[int]:
"""Convert tissue type to binary trait value.
1: NASH-HCC tumor (case)
0: NASH liver, non-tumoral NASH liver (control)
None: Healthy liver, cirrhotic liver (excluded)
"""
if not value or ':' not in value:
return None
tissue = value.split(':', 1)[1].strip().lower()
if 'nash-hcc tumor' in tissue:
return 1
elif 'nash liver' in tissue:
return 0
else:
return None
def convert_age(value: str) -> Optional[float]:
return None # Not used
def convert_gender(value: str) -> Optional[int]:
return None # Not used
# 3. Save Metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# 4. Clinical Feature Extraction
if trait_row is not None:
clinical_data_processed = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait
)
# Preview the processed data
print("Preview of processed clinical data:")
print(preview_df(clinical_data_processed))
# Save to CSV
clinical_data_processed.to_csv(out_clinical_data_file)
# 1. Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# 2. Print first 20 row IDs
print("First 20 gene/probe identifiers:")
print(genetic_data.index[:20])
# The identifiers in format '11715100_at' appear to be Affymetrix probeset IDs
# rather than standard human gene symbols. They will need to be mapped to gene symbols.
requires_gene_mapping = True
# 1. Extract gene annotation data from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)
# 2. Preview annotation data
print("Column names and first few values in gene annotation data:")
print(preview_df(gene_annotation))
# 1. Identify columns for mapping
# In the annotation data, 'ID' contains the same probe IDs as in gene_expression data
# 'Gene Symbol' contains the corresponding gene symbols
prob_col = 'ID'
gene_col = 'Gene Symbol'
# 2. Get mapping between probe IDs and gene symbols
mapping_data = get_gene_mapping(gene_annotation, prob_col, gene_col)
# 3. Apply mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# 1. Normalize gene symbols and save gene data
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_data_processed, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Judge if features are biased
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Save cohort information
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Expression array data of NASH-HCC patients and NASH controls. No age/gender information available."
)
# 6. Save linked data if usable
if is_usable:
linked_data.to_csv(out_data_file) |