File size: 4,705 Bytes
7623c74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Liver_Cancer"
cohort = "GSE212047"

# Input paths
in_trait_dir = "../DATA/GEO/Liver_Cancer"
in_cohort_dir = "../DATA/GEO/Liver_Cancer/GSE212047"

# Output paths
out_data_file = "./output/preprocess/3/Liver_Cancer/GSE212047.csv"
out_gene_data_file = "./output/preprocess/3/Liver_Cancer/gene_data/GSE212047.csv"
out_clinical_data_file = "./output/preprocess/3/Liver_Cancer/clinical_data/GSE212047.csv"
json_path = "./output/preprocess/3/Liver_Cancer/cohort_info.json"

# Get file paths for soft and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values for each clinical feature row 
clinical_features = get_unique_values_by_row(clinical_data)

# Print background info
print("Background Information:")
print(background_info)
print("\nClinical Features and Sample Values:")
print(json.dumps(clinical_features, indent=2))
# 1. Gene Expression Data Availability
# This is a microarray dataset of HSC cells, which should contain gene expression data
is_gene_available = True

# 2. Variable Availability and Data Type Conversion
# This is an animal study (mice) of specific genotypes, not a human study comparing disease cases vs. controls
# So trait data is not available in a way useful for our analysis
trait_row = None  
age_row = None
gender_row = None

def convert_trait(x):
    return None

def convert_age(x):
    return None 

def convert_gender(x):
    return None

# 3. Save Metadata
# The dataset only has genetic data but no trait data for our analysis
is_trait_available = False if trait_row is None else True
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=is_trait_available)

# 4. Clinical Feature Extraction
# Skip this step since trait_row is None
# Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file)

# Print DataFrame info and dimensions to verify data structure
print("DataFrame info:")
print(genetic_data.info())
print("\nDataFrame dimensions:", genetic_data.shape)

# Print an excerpt of the data to inspect row/column structure
print("\nFirst few rows and columns of data:")
print(genetic_data.head().iloc[:, :5])

# Print first 20 row IDs
print("\nFirst 20 gene/probe IDs:")
print(genetic_data.index[:20].tolist())
# Looking at the row indices (gene identifiers), they appear to be numerical identifiers (10338001, etc.)
# rather than standard human gene symbols (which are usually alphanumeric like BRCA1, TP53, etc.)
# These appear to be probe IDs that will need to be mapped to gene symbols.

requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file)

# Extract gene symbols from gene_assignment column
def extract_gene_symbol(assignment):
    if pd.isna(assignment) or assignment == '---':
        return None
    # Get the second part after '//' which typically contains the gene symbol
    parts = assignment.split('//')
    if len(parts) >= 2:
        return parts[1].strip()
    return None

# Create mapping dataframe with ID and extracted gene symbols
mapping_df = pd.DataFrame({
    'ID': gene_annotation['ID'],
    'Gene': gene_annotation['gene_assignment'].apply(extract_gene_symbol)
})

# Preview the mapping data structure
print("Gene Mapping Preview:")
preview = preview_df(mapping_df)
print(json.dumps(preview, indent=2))
# Map gene identifiers between genetic data and annotation data
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# Print info about gene expression data after mapping
print("Gene Expression Data after Mapping:")
print(f"Number of genes: {len(gene_data)}")
print("\nFirst few rows and columns:")
print(gene_data.head().iloc[:, :5])
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# Create an empty dataframe since this is just a mouse study without usable trait data
empty_df = pd.DataFrame(columns=['trait'])

# Check bias and save metadata 
is_biased = True # Set as biased since this is not even human data
note = "This is a mouse study without usable trait data for human disease analysis."

validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=False,
    is_biased=is_biased,
    df=empty_df,
    note=note
)