File size: 5,444 Bytes
7623c74 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Liver_Cancer"
cohort = "GSE218438"
# Input paths
in_trait_dir = "../DATA/GEO/Liver_Cancer"
in_cohort_dir = "../DATA/GEO/Liver_Cancer/GSE218438"
# Output paths
out_data_file = "./output/preprocess/3/Liver_Cancer/GSE218438.csv"
out_gene_data_file = "./output/preprocess/3/Liver_Cancer/gene_data/GSE218438.csv"
out_clinical_data_file = "./output/preprocess/3/Liver_Cancer/clinical_data/GSE218438.csv"
json_path = "./output/preprocess/3/Liver_Cancer/cohort_info.json"
# Get file paths for soft and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values for each clinical feature row
clinical_features = get_unique_values_by_row(clinical_data)
# Print background info
print("Background Information:")
print(background_info)
print("\nClinical Features and Sample Values:")
print(json.dumps(clinical_features, indent=2))
# 1. Gene Expression Data Availability
# This dataset is about transcriptional profiling using L1000 platform across multiple cell lines
# So it contains gene expression data
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
# Looking at the sample characteristics, we can't find trait (disease status), age or gender information
# The data is from cell lines, not human patients
trait_row = None
age_row = None
gender_row = None
# 2.2 Data Type Conversion
# Although not used since data is unavailable, defining conversion functions as required
def convert_trait(x):
return None
def convert_age(x):
return None
def convert_gender(x):
return None
# 3. Save Metadata
# Initial validation - trait data is not available
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=False # trait_row is None
)
# 4. Clinical Feature Extraction
# Skip this step since trait_row is None
# Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file)
# Print DataFrame info and dimensions to verify data structure
print("DataFrame info:")
print(genetic_data.info())
print("\nDataFrame dimensions:", genetic_data.shape)
# Print an excerpt of the data to inspect row/column structure
print("\nFirst few rows and columns of data:")
print(genetic_data.head().iloc[:, :5])
# Print first 20 row IDs
print("\nFirst 20 gene/probe IDs:")
print(genetic_data.index[:20].tolist())
# These IDs appear to be Affymetrix probe IDs (e.g. "1007_s_at", "AFFX-TrpnX-M_at")
# which need to be mapped to human gene symbols for proper analysis
requires_gene_mapping = True
# Extract gene annotation data with different prefix filtering
# Platform sections in SOFT files often start with "!Platform_table_begin" until "!Platform_table_end"
gene_annotation = get_gene_annotation(soft_file, prefixes=['!Platform_table_begin', '!Platform_table_end'])
# Preview the annotation data structure to identify relevant columns
print("Gene Annotation Data Preview:")
preview = preview_df(gene_annotation)
print(json.dumps(preview, indent=2))
# Print column names
print("\nAvailable columns:")
print(gene_annotation.columns.tolist())
# Extract gene annotation data using platform table markers
gene_annotation = get_gene_annotation(soft_file, prefixes=['!Platform_table_begin', '!Platform_table_end'])
# Preview the data structure and columns
print("Gene Annotation Data Structure:")
print("DataFrame dimensions:", gene_annotation.shape)
print("\nFirst few rows and columns:")
print(gene_annotation.head())
# Print column names to help identify probe ID and gene symbol columns
print("\nAvailable columns:")
print(gene_annotation.columns.tolist())
# Load the gene annotation data from SOFT file - specifically targeting platform annotation table
with gzip.open(soft_file, 'rt') as f:
platform_section = False
table_data = []
header = None
for line in f:
if 'Gene_Symbol' in line or 'Gene Symbol' in line:
# Found the header line
header = line.strip().split('\t')
platform_section = True
continue
elif platform_section and line.strip():
if '!Platform_table_end' in line:
platform_section = False
else:
table_data.append(line.strip().split('\t'))
# Create dataframe if we found the header
if header:
gene_annotation = pd.DataFrame(table_data, columns=header)
print("Updated Gene Annotation Data:")
print(gene_annotation.head())
print("\nColumns:", gene_annotation.columns.tolist())
# Extract mapping between probe IDs and gene symbols
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene_Symbol')
print("\nGene Mapping Preview:")
print(mapping_data.head())
# Apply the mapping to convert probe level data to gene level data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Preview the resulting gene expression data
print("\nGene Expression Data:")
print(f"Shape: {gene_data.shape}")
print("\nFirst few rows and columns:")
print(gene_data.head().iloc[:, :5])
else:
print("Could not find gene symbol column in platform annotation") |