File size: 5,533 Bytes
7623c74 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Liver_Cancer"
cohort = "GSE228782"
# Input paths
in_trait_dir = "../DATA/GEO/Liver_Cancer"
in_cohort_dir = "../DATA/GEO/Liver_Cancer/GSE228782"
# Output paths
out_data_file = "./output/preprocess/3/Liver_Cancer/GSE228782.csv"
out_gene_data_file = "./output/preprocess/3/Liver_Cancer/gene_data/GSE228782.csv"
out_clinical_data_file = "./output/preprocess/3/Liver_Cancer/clinical_data/GSE228782.csv"
json_path = "./output/preprocess/3/Liver_Cancer/cohort_info.json"
# Get file paths for soft and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values for each clinical feature row
clinical_features = get_unique_values_by_row(clinical_data)
# Print background info
print("Background Information:")
print(background_info)
print("\nClinical Features and Sample Values:")
print(json.dumps(clinical_features, indent=2))
# 1. Gene Expression Data Availability
# Based on background info mentioning RNA profiles and Affymetrix microarrays
is_gene_available = True
# 2.1 Data Availability
# From sample characteristics:
# Key 2 contains disease info - can be used to determine trait (cancer vs normal)
trait_row = 2
# No age data available
age_row = None
# No gender data available
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> Optional[int]:
"""Convert disease status to binary (1 for cancer, 0 for non-cancer)"""
if not value or ':' not in value:
return None
value = value.split(':')[1].strip().upper()
if value in ['CCC', 'CRC MET', 'HCC']: # These are cancer types
return 1
elif value == 'OTHER': # Cannot determine cancer status
return None
return 0
def convert_age(value: str) -> Optional[float]:
"""Placeholder function since age is not available"""
return None
def convert_gender(value: str) -> Optional[int]:
"""Placeholder function since gender is not available"""
return None
# 3. Save metadata - initial filtering
_ = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# 4. Extract clinical features since trait_row is not None
clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the processed clinical data
preview = preview_df(clinical_df)
print(f"Clinical data preview: {preview}")
# Save clinical data
clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file)
# Print DataFrame info and dimensions to verify data structure
print("DataFrame info:")
print(genetic_data.info())
print("\nDataFrame dimensions:", genetic_data.shape)
# Print an excerpt of the data to inspect row/column structure
print("\nFirst few rows and columns of data:")
print(genetic_data.head().iloc[:, :5])
# Print first 20 row IDs
print("\nFirst 20 gene/probe IDs:")
print(genetic_data.index[:20].tolist())
# The identifiers like "11715100_at" are Affymetrix probe IDs, not human gene symbols
# They need to be mapped to gene symbols for biological interpretation
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file)
# Identify mapping columns
prob_col = 'ID' # Column containing probe IDs
gene_col = 'Gene Symbol' # Column containing gene symbols
# Get mapping between probe IDs and gene symbols
mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)
# Preview the mapping data structure
print("Gene Mapping Preview:")
preview = preview_df(mapping_df)
print(json.dumps(preview, indent=2))
# Map probe IDs to gene symbols and convert probe-level measurements to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Print the gene data structure to verify mapping success
print("\nGene Expression Data Preview:")
preview = preview_df(gene_data)
print(json.dumps(preview, indent=2))
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
# Debug print to check data before handling missing values
print("\nPreview of linked data before handling missing values:")
print(linked_data.head())
# 3. Handle missing values
linked_data = handle_missing_values(df=linked_data, trait_col=trait)
print("\nPreview of linked data after handling missing values:")
print(linked_data.head())
# 4. Check for biases and remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate dataset quality and save metadata
note = ""
if is_biased:
note = "The trait distribution is severely biased."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note=note
)
# 6. Save linked data if usable
if is_usable:
linked_data.to_csv(out_data_file) |