File size: 4,677 Bytes
7623c74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Liver_cirrhosis"
cohort = "GSE163211"

# Input paths
in_trait_dir = "../DATA/GEO/Liver_cirrhosis"
in_cohort_dir = "../DATA/GEO/Liver_cirrhosis/GSE163211"

# Output paths
out_data_file = "./output/preprocess/3/Liver_cirrhosis/GSE163211.csv"
out_gene_data_file = "./output/preprocess/3/Liver_cirrhosis/gene_data/GSE163211.csv"
out_clinical_data_file = "./output/preprocess/3/Liver_cirrhosis/clinical_data/GSE163211.csv"
json_path = "./output/preprocess/3/Liver_cirrhosis/cohort_info.json"

# Step 1: Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Step 2: Extract background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Step 3: Get dictionary of unique values for each clinical feature
unique_values_dict = get_unique_values_by_row(clinical_data)

# Step 4: Print background info and sample characteristics
print("Dataset Background Information:")
print("-" * 80)
print(background_info)
print("\nSample Characteristics:")
print("-" * 80)
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# From the background info, we can see this dataset contains gene expression data from Nanostring nCounter assay
is_gene_available = True

# 2.1 Data Availability
# Cirrhosis status can be inferred from NAFLD stage in row 8
trait_row = 8  

# Age is available in row 3
age_row = 3  

# Gender is available in row 4
gender_row = 4

# 2.2 Data Type Conversion Functions
def convert_trait(x):
    if not x or ':' not in x:
        return None
    stage = x.split(': ')[1].strip()
    # NASH with fibrosis stage 1-4 indicates cirrhosis, others are non-cirrhosis
    return 1 if stage == 'NASH_F1_F4' else 0

def convert_age(x):
    if not x or ':' not in x:
        return None
    try:
        return float(x.split(': ')[1])
    except:
        return None

def convert_gender(x):
    if not x or ':' not in x:
        return None
    gender = x.split(': ')[1].strip().lower()
    if gender == 'female':
        return 0
    elif gender == 'male':
        return 1
    return None

# 3. Save Metadata
validate_and_save_cohort_info(is_final=False, 
                             cohort=cohort,
                             info_path=json_path,
                             is_gene_available=is_gene_available,
                             is_trait_available=True)

# 4. Clinical Feature Extraction
selected_clinical_df = geo_select_clinical_features(clinical_df=clinical_data,
                                                  trait=trait,
                                                  trait_row=trait_row,
                                                  convert_trait=convert_trait,
                                                  age_row=age_row,
                                                  convert_age=convert_age,
                                                  gender_row=gender_row,
                                                  convert_gender=convert_gender)

# Preview the clinical data
preview_result = preview_df(selected_clinical_df)

# Save clinical data
selected_clinical_df.to_csv(out_clinical_data_file)
# 1. Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# 2. Print first 20 row IDs
print("First 20 gene/probe identifiers:")
print(genetic_data.index[:20])
requires_gene_mapping = False
# 1. Normalize gene symbols and save gene data
normalized_gene_data = normalize_gene_symbols_in_index(genetic_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
linked_data = linked_data.rename(columns={'nafld stage': trait})

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for biased features and remove biased demographic ones
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and save metadata
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note="Contains gene expression data from Nanostring nCounter assay measuring 795 genes in liver tissue from NAFLD patients."
)

# 6. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)