File size: 11,947 Bytes
61e25af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Obesity"
cohort = "GSE123086"
# Input paths
in_trait_dir = "../DATA/GEO/Obesity"
in_cohort_dir = "../DATA/GEO/Obesity/GSE123086"
# Output paths
out_data_file = "./output/preprocess/3/Obesity/GSE123086.csv"
out_gene_data_file = "./output/preprocess/3/Obesity/gene_data/GSE123086.csv"
out_clinical_data_file = "./output/preprocess/3/Obesity/clinical_data/GSE123086.csv"
json_path = "./output/preprocess/3/Obesity/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Yes, from series design we can see RNA microarray was used
is_gene_available = True
# 2.1 Data Availability
# Trait data is in Feature 1 under "primary diagnosis"
trait_row = 1
# Age data is spread across Features 3 and 4
age_row = 3
# Gender data is in Feature 2 under "Sex"
gender_row = 2
# 2.2 Data Type Conversion Functions
def convert_trait(x):
# Extract value after colon and convert to binary
if pd.isna(x):
return None
value = x.split(': ')[1]
if value == 'OBESITY':
return 1
elif value == 'HEALTHY_CONTROL':
return 0
return None
def convert_age(x):
# Extract age value as continuous
if pd.isna(x):
return None
if not x.startswith('age:'):
return None
try:
return float(x.split(': ')[1])
except:
return None
def convert_gender(x):
# Convert gender to binary (female=0, male=1)
if pd.isna(x):
return None
if not x.startswith('Sex:'):
return None
value = x.split(': ')[1]
if value == 'Female':
return 0
elif value == 'Male':
return 1
return None
# 3. Initial Filtering and Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Clinical Feature Extraction
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
print("Preview of extracted clinical features:")
print(preview_df(clinical_features))
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# Looking at the identifiers - they are numeric values (1,2,3,9,10 etc)
# These appear to be probe/feature IDs rather than gene symbols
# Therefore mapping to gene symbols will be required
requires_gene_mapping = True
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# For SOFT files with platform annotations, we need to get rows not starting with '!'
# but also not containing just numeric IDs and entrez genes
gene_annotation = pd.read_csv(soft_file, compression='gzip', sep='\t', header=None,
comment='!', on_bad_lines='skip')
# Find rows with detailed platform annotations (containing gene symbols)
annotation_starts = False
annotation_lines = []
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
for line in f:
if "!platform_table_begin" in line:
annotation_starts = True
# Get the header line
header = next(f).strip()
annotation_lines.append(header)
continue
if annotation_starts:
if "!platform_table_end" in line:
break
annotation_lines.append(line.strip())
# Convert annotation lines to dataframe
annotation_content = '\n'.join(annotation_lines)
gene_annotation = pd.read_csv(io.StringIO(annotation_content), sep='\t')
# Preview annotation data
print("Gene annotation shape:", gene_annotation.shape)
print("\nAll column names:")
print(gene_annotation.columns.tolist())
print("\nFirst few rows:")
print(gene_annotation.head().to_string())
print("\nNumber of non-null values in each column:")
print(gene_annotation.count())
# Print example rows showing ID and gene symbol columns
print("\nSample rows showing the ID and gene symbol mapping:")
symbol_col = [col for col in gene_annotation.columns if 'symbol' in col.lower()][0]
print(gene_annotation[['ID', symbol_col]].head(10))
# Extract complete platform annotation table from SOFT file
platform_lines = []
annotation_starts = False
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
for line in f:
if line.startswith('^PLATFORM'):
platform_lines.append(line)
elif line.startswith('!Platform_data_row_count'):
platform_lines.append(line)
elif line.startswith('!Platform_table_begin'):
annotation_starts = True
header = next(f).strip()
platform_lines.append(header)
continue
elif annotation_starts:
if line.startswith('!Platform_table_end'):
break
platform_lines.append(line.strip())
# Parse platform annotation content
platform_content = '\n'.join(platform_lines)
gene_annotation = pd.read_csv(io.StringIO(platform_content), sep='\t', comment='!', skiprows=2)
# Create mapping DataFrame using ID and gene symbol
mapping_df = gene_annotation[['ID', 'GB_ACC']].copy()
mapping_df = mapping_df.rename(columns={'GB_ACC': 'Gene'})
# Clean gene symbols - split on spaces/semicolons and take first value
mapping_df['Gene'] = mapping_df['Gene'].astype(str).apply(lambda x: x.split(';')[0].split()[0])
mapping_df = mapping_df.dropna()
# Apply gene mapping to convert probe expression to gene expression
gene_data = apply_gene_mapping(gene_data, mapping_df)
# Normalize gene symbols using the provided function
gene_data = normalize_gene_symbols_in_index(gene_data)
# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# Preview the mapped gene data
print("Shape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few mapped genes and their expression values:")
print(gene_data.head())
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Try to peek at the SOFT file contents first
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
# Read first few lines to understand file structure
print("First 20 lines of SOFT file:")
for i, line in enumerate(f):
if i < 20:
print(line.strip())
else:
break
# Reset file pointer
f.seek(0)
# Look for the platform table section
print("\nPlatform table header:")
for line in f:
if "!Platform_table_begin" in line:
# Print the next line which should be the header
print(next(f).strip())
break
# Now extract annotation data using a simpler method - get lines between table markers
annotation_lines = []
table_started = False
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
for line in f:
if "!Platform_table_begin" in line:
header = next(f).strip()
annotation_lines.append(header)
table_started = True
continue
if table_started:
if "!Platform_table_end" in line:
break
annotation_lines.append(line.strip())
# Convert to dataframe
annotation_text = '\n'.join(annotation_lines)
gene_annotation = pd.read_csv(io.StringIO(annotation_text), sep='\t')
# Preview annotation data
print("\nAnnotation data shape:", gene_annotation.shape)
print("\nColumn names:")
print(gene_annotation.columns.tolist())
print("\nFirst few rows:")
print(gene_annotation.head())
# 1. Let's examine SOFT file content first to identify correct gene identifier columns
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
for line in f:
if '!Platform_table_begin' in line:
header = next(f).strip()
print("Platform table header:")
print(header)
print("\nFirst few data rows:")
for i in range(5):
print(next(f).strip())
break
# Extract gene metadata using library function
gene_metadata = get_gene_annotation(soft_file)
# Print available columns to identify gene symbol column
print("\nAvailable annotation columns:")
print(gene_metadata.columns.tolist())
print("\nPreview of gene metadata:")
print(gene_metadata.head())
# Get gene expression data
gene_data = get_genetic_data(matrix_file)
# Print shape and preview of expression data before mapping
print("\nShape of gene expression data before mapping:", gene_data.shape)
print("\nPreview of gene expression data before mapping:")
print(gene_data.head())
# Use library function to get gene annotation from SOFT file
gene_metadata = get_gene_annotation(soft_file)
# Create mapping DataFrame using ID and ENTREZ_GENE_ID
mapping_df = gene_metadata[['ID', 'ENTREZ_GENE_ID']].copy()
mapping_df = mapping_df.rename(columns={'ENTREZ_GENE_ID': 'Gene'})
# Clean and prepare mapping data
mapping_df['ID'] = mapping_df['ID'].astype(str)
mapping_df['Gene'] = mapping_df['Gene'].astype(str)
mapping_df = mapping_df.dropna()
# Apply gene mapping to convert probe expression to gene expression
gene_data = apply_gene_mapping(gene_data, mapping_df)
# Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
# Save processed gene expression data
gene_data.to_csv(out_gene_data_file)
print("\nShape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few mapped genes and their expression values:")
print(gene_data.head())
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene annotation from SOFT file and get meaningful data
gene_annotation = get_gene_annotation(soft_file)
# Preview gene annotation data
print("Gene annotation shape:", gene_annotation.shape)
print("\nGene annotation preview:")
print(preview_df(gene_annotation))
print("\nNumber of non-null values in each column:")
print(gene_annotation.count())
# Print example rows showing the mapping information columns
print("\nSample mapping columns ('ID' and 'GENE_SYMBOL'):")
print("\nFirst 5 rows:")
print(gene_annotation[['ID', 'GENE_SYMBOL']].head().to_string())
print("\nNote: Gene mapping will use:")
print("'ID' column: Probe identifiers")
print("'GENE_SYMBOL' column: Contains gene symbol information") |