File size: 10,449 Bytes
61e25af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Obesity"
cohort = "GSE123088"
# Input paths
in_trait_dir = "../DATA/GEO/Obesity"
in_cohort_dir = "../DATA/GEO/Obesity/GSE123088"
# Output paths
out_data_file = "./output/preprocess/3/Obesity/GSE123088.csv"
out_gene_data_file = "./output/preprocess/3/Obesity/gene_data/GSE123088.csv"
out_clinical_data_file = "./output/preprocess/3/Obesity/clinical_data/GSE123088.csv"
json_path = "./output/preprocess/3/Obesity/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
import pandas as pd
import numpy as np
# Check gene expression data availability
is_gene_available = True # CD4+ T cells expression data should be present
# Find trait, age and gender data rows and define conversion functions
trait_row = 1 # 'primary diagnosis' contains obesity info
age_row = 3 # 'age' info starts in row 3, continues in row 4
gender_row = 2 # 'Sex' information
def convert_trait(x):
if pd.isna(x):
return None
val = x.split(': ')[1] if ': ' in x else x
if val.upper() in ['OBESITY']:
return 1
elif 'CONTROL' in val.upper():
return 0
return None
def convert_age(x):
if pd.isna(x):
return None
try:
val = x.split(': ')[1] if ': ' in x else x
return float(val)
except:
return None
def convert_gender(x):
if pd.isna(x):
return None
val = x.split(': ')[1] if ': ' in x else x
if val.upper() == 'FEMALE':
return 0
elif val.upper() == 'MALE':
return 1
return None
# Validate and save initial cohort info
_ = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# Extract clinical features if trait data is available
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(
clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the clinical features
preview = preview_df(selected_clinical_df)
print("Clinical features preview:")
print(preview)
# Save clinical features
selected_clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# Based on the gene expression data shown, the identifiers appear to be numerical indices (1, 2, 3, etc.)
# rather than human gene symbols. This indicates mapping to gene symbols will be required.
requires_gene_mapping = True
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# First inspect a snippet of raw SOFT file to understand its structure
import gzip
print("Inspecting raw SOFT file structure:")
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if i < 20: # Look at first 20 lines
lines.append(line.strip())
else:
break
print('\n'.join(lines))
print("\n" + "="*50 + "\n")
# Extract gene annotation from SOFT file, excluding header lines
gene_annotation = get_gene_annotation(soft_file)
# Preview gene annotation data
print("Gene annotation shape:", gene_annotation.shape)
print("\nGene annotation columns:")
print(gene_annotation.columns.tolist())
print("\nGene annotation preview:")
print(preview_df(gene_annotation))
print("\nNumber of non-null values in each column:")
print(gene_annotation.count())
# Print first few rows of annotation data to verify structure
print("\nFirst 5 rows of annotation data:")
print(gene_annotation.head().to_string())
# First find the SubSeries ID from the SOFT file
import gzip
subseries_id = None
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
for line in f:
if line.startswith('!Series_relation'):
if 'SubSeries of:' not in line:
subseries_id = line.strip().split(' = ')[1].split(' ')[0]
break
# The correct subseries directory should be one level up
platform_soft_file = os.path.join(os.path.dirname(os.path.dirname(soft_file)),
subseries_id,
f"{subseries_id}_family.soft.gz")
# Extract platform annotation from the subseries SOFT file
platform_lines = []
with gzip.open(platform_soft_file, 'rt', encoding='utf-8') as f:
reading_platform = False
for line in f:
if line.startswith('!Platform_table_begin'):
reading_platform = True
# Skip the header line
header = next(f).strip().split('\t')
continue
elif line.startswith('!Platform_table_end'):
break
elif reading_platform:
platform_lines.append(line.strip())
# Create platform annotation dataframe
platform_data = [line.split('\t') for line in platform_lines]
df_platform = pd.DataFrame(platform_data, columns=header)
# Get mapping using ID and gene symbol columns
mapping_data = get_gene_mapping(df_platform, 'ID', 'Gene Symbol')
# Apply gene mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(gene_data, mapping_data)
# Preview results
print("Shape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few rows of mapped gene expression data:")
print(gene_data.head())
# Ensure index is string type for gene symbol mapping
gene_data.index = gene_data.index.astype(str)
# Convert Entrez IDs to gene symbols using the built-in mapping
gene_data = normalize_gene_symbols_in_index(gene_data)
# Print shape and preview results
print("Shape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few rows of mapped gene expression data:")
print(gene_data.head())
# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# 1. First get platform annotation with gene symbols
import gzip
with gzip.open(soft_file, 'rt') as f:
platform_section = False
platform_lines = []
for line in f:
if line.startswith('^PLATFORM'):
platform_section = True
elif platform_section and line.startswith('!Platform_table_begin'):
header = next(f).strip().split('\t')
for l in f:
if l.startswith('!Platform_table_end'):
break
platform_lines.append(l.strip())
# Create platform annotation dataframe
platform_data = [line.split('\t') for line in platform_lines]
platform_df = pd.DataFrame(platform_data, columns=header)
mapping_df = get_gene_mapping(platform_df, 'ID', 'Gene Symbol')
# Apply mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(gene_data, mapping_df)
# 2. Load clinical data and normalize gene symbols
selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0)
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 3. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)
# 4. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 5. Check for biased features and remove them if needed
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 6. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note="Study examining gene expression in CD4+ T cells across multiple diseases including obesity"
)
# 7. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)
# 1. Since we have Entrez IDs in the gene expression data index,
# we can directly normalize them to gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Load clinical data and link with genetic data
selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biased features and remove them if needed
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note="Study examining gene expression in CD4+ T cells across multiple diseases including obesity"
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |