File size: 10,449 Bytes
61e25af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Obesity"
cohort = "GSE123088"

# Input paths
in_trait_dir = "../DATA/GEO/Obesity"
in_cohort_dir = "../DATA/GEO/Obesity/GSE123088"

# Output paths
out_data_file = "./output/preprocess/3/Obesity/GSE123088.csv"
out_gene_data_file = "./output/preprocess/3/Obesity/gene_data/GSE123088.csv"
out_clinical_data_file = "./output/preprocess/3/Obesity/clinical_data/GSE123088.csv"
json_path = "./output/preprocess/3/Obesity/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
import pandas as pd
import numpy as np

# Check gene expression data availability
is_gene_available = True  # CD4+ T cells expression data should be present

# Find trait, age and gender data rows and define conversion functions
trait_row = 1 # 'primary diagnosis' contains obesity info
age_row = 3 # 'age' info starts in row 3, continues in row 4
gender_row = 2 # 'Sex' information

def convert_trait(x):
    if pd.isna(x):
        return None
    val = x.split(': ')[1] if ': ' in x else x
    if val.upper() in ['OBESITY']:
        return 1
    elif 'CONTROL' in val.upper():
        return 0
    return None

def convert_age(x):
    if pd.isna(x):
        return None
    try:
        val = x.split(': ')[1] if ': ' in x else x
        return float(val)
    except:
        return None

def convert_gender(x):
    if pd.isna(x):
        return None
    val = x.split(': ')[1] if ': ' in x else x
    if val.upper() == 'FEMALE':
        return 0
    elif val.upper() == 'MALE':
        return 1
    return None

# Validate and save initial cohort info
_ = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=trait_row is not None
)

# Extract clinical features if trait data is available
if trait_row is not None:
    selected_clinical_df = geo_select_clinical_features(
        clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the clinical features
    preview = preview_df(selected_clinical_df)
    print("Clinical features preview:")
    print(preview)
    
    # Save clinical features
    selected_clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# Based on the gene expression data shown, the identifiers appear to be numerical indices (1, 2, 3, etc.)
# rather than human gene symbols. This indicates mapping to gene symbols will be required.
requires_gene_mapping = True
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# First inspect a snippet of raw SOFT file to understand its structure
import gzip
print("Inspecting raw SOFT file structure:")
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if i < 20:  # Look at first 20 lines
            lines.append(line.strip())
        else:
            break
print('\n'.join(lines))
print("\n" + "="*50 + "\n")

# Extract gene annotation from SOFT file, excluding header lines
gene_annotation = get_gene_annotation(soft_file)

# Preview gene annotation data
print("Gene annotation shape:", gene_annotation.shape)
print("\nGene annotation columns:")
print(gene_annotation.columns.tolist())
print("\nGene annotation preview:")
print(preview_df(gene_annotation))

print("\nNumber of non-null values in each column:")
print(gene_annotation.count())

# Print first few rows of annotation data to verify structure
print("\nFirst 5 rows of annotation data:")
print(gene_annotation.head().to_string())
# First find the SubSeries ID from the SOFT file
import gzip
subseries_id = None
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
    for line in f:
        if line.startswith('!Series_relation'):
            if 'SubSeries of:' not in line:
                subseries_id = line.strip().split(' = ')[1].split(' ')[0]
                break

# The correct subseries directory should be one level up
platform_soft_file = os.path.join(os.path.dirname(os.path.dirname(soft_file)), 
                                 subseries_id, 
                                 f"{subseries_id}_family.soft.gz")

# Extract platform annotation from the subseries SOFT file
platform_lines = []
with gzip.open(platform_soft_file, 'rt', encoding='utf-8') as f:
    reading_platform = False
    for line in f:
        if line.startswith('!Platform_table_begin'):
            reading_platform = True
            # Skip the header line
            header = next(f).strip().split('\t')
            continue
        elif line.startswith('!Platform_table_end'):
            break
        elif reading_platform:
            platform_lines.append(line.strip())

# Create platform annotation dataframe
platform_data = [line.split('\t') for line in platform_lines]
df_platform = pd.DataFrame(platform_data, columns=header)

# Get mapping using ID and gene symbol columns
mapping_data = get_gene_mapping(df_platform, 'ID', 'Gene Symbol')

# Apply gene mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(gene_data, mapping_data)

# Preview results
print("Shape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few rows of mapped gene expression data:")
print(gene_data.head())
# Ensure index is string type for gene symbol mapping
gene_data.index = gene_data.index.astype(str)

# Convert Entrez IDs to gene symbols using the built-in mapping
gene_data = normalize_gene_symbols_in_index(gene_data)

# Print shape and preview results
print("Shape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few rows of mapped gene expression data:")
print(gene_data.head())

# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# 1. First get platform annotation with gene symbols
import gzip

with gzip.open(soft_file, 'rt') as f:
    platform_section = False
    platform_lines = []
    for line in f:
        if line.startswith('^PLATFORM'):
            platform_section = True
        elif platform_section and line.startswith('!Platform_table_begin'):
            header = next(f).strip().split('\t')
            for l in f:
                if l.startswith('!Platform_table_end'):
                    break
                platform_lines.append(l.strip())

# Create platform annotation dataframe
platform_data = [line.split('\t') for line in platform_lines]
platform_df = pd.DataFrame(platform_data, columns=header)
mapping_df = get_gene_mapping(platform_df, 'ID', 'Gene Symbol')

# Apply mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(gene_data, mapping_df)

# 2. Load clinical data and normalize gene symbols
selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0)
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)

# 3. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)

# 4. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 5. Check for biased features and remove them if needed
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 6. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note="Study examining gene expression in CD4+ T cells across multiple diseases including obesity"
)

# 7. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)
# 1. Since we have Entrez IDs in the gene expression data index,
# we can directly normalize them to gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)

# 2. Load clinical data and link with genetic data
selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for biased features and remove them if needed 
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path, 
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note="Study examining gene expression in CD4+ T cells across multiple diseases including obesity"
)

# 6. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)