File size: 10,439 Bytes
61e25af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Obesity"
cohort = "GSE158237"

# Input paths
in_trait_dir = "../DATA/GEO/Obesity"
in_cohort_dir = "../DATA/GEO/Obesity/GSE158237"

# Output paths
out_data_file = "./output/preprocess/3/Obesity/GSE158237.csv"
out_gene_data_file = "./output/preprocess/3/Obesity/gene_data/GSE158237.csv"
out_clinical_data_file = "./output/preprocess/3/Obesity/clinical_data/GSE158237.csv"
json_path = "./output/preprocess/3/Obesity/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Based on series title and summary mentioning RNA extraction and transcriptomics,
# this dataset likely contains gene expression data
is_gene_available = True

# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability 
trait_row = 10  # BMI data in Feature 10
age_row = 1     # Age data in Feature 1  
gender_row = 2  # Sex data in Feature 2

# 2.2 Data Type Conversion Functions
def convert_trait(value):
    # Convert BMI value to binary (0 for non-obese, 1 for obese)
    if pd.isna(value):
        return None
    try:
        bmi = float(value.split(': ')[1])
        return 1 if bmi >= 30 else 0  # Standard obesity threshold
    except:
        return None

def convert_age(value):
    # Convert age to continuous value
    if pd.isna(value):
        return None
    try:
        age = float(value.split(': ')[1])
        return age
    except:
        return None

def convert_gender(value):
    # Convert sex to binary (0 for female, 1 for male)
    if pd.isna(value):
        return None
    try:
        sex = int(value.split(': ')[1])
        return 1 if sex == 1 else 0  # Assuming Sex:1 is male and Sex:2 is female
    except:
        return None

# 3. Save Metadata
# Conduct initial filtering
validate_and_save_cohort_info(is_final=False,
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=(trait_row is not None))

# 4. Clinical Feature Extraction
# Since trait_row is not None, extract clinical features
if trait_row is not None:
    clinical_features = geo_select_clinical_features(clinical_data,
                                                   trait=trait,
                                                   trait_row=trait_row,
                                                   convert_trait=convert_trait,
                                                   age_row=age_row,
                                                   convert_age=convert_age,
                                                   gender_row=gender_row,
                                                   convert_gender=convert_gender)
    
    # Preview the extracted features
    preview = preview_df(clinical_features)
    print("Preview of clinical features:", preview)
    
    # Save to CSV
    clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# From the output, we can see the identifiers appear to be numeric probe IDs (e.g. 16657436)
# rather than human gene symbols (which would look like BRCA1, TP53 etc)
# These need to be mapped to gene symbols for biological interpretation
requires_gene_mapping = True
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene annotation from SOFT file
# Use different prefix filters to capture platform annotation with gene symbols
gene_annotation = filter_content_by_prefix(soft_file, 
                                         prefixes_a=['!Platform_table_begin'],
                                         unselect=False,
                                         source_type='file',
                                         return_df_a=True)[0]

# Preview gene annotation data
print("Gene annotation shape:", gene_annotation.shape)
print("\nGene annotation columns:", list(gene_annotation.columns))
print("\nGene annotation preview:")
print(preview_df(gene_annotation))

# Print non-null values for each column to help identify useful columns
print("\nNumber of non-null values in each column:")
print(gene_annotation.count())

# Print example rows showing ID and gene symbol columns
print("\nExample rows with ID and gene symbol information:")
print(gene_annotation[['ID', 'Symbol']].head(10).to_string())
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# First examine the raw SOFT file content to locate platform annotation section
import gzip
platform_start = False
header_line = None
first_data_line = None

with gzip.open(soft_file, 'rt') as f:
    for line in f:
        if '!Platform_table_begin' in line:
            platform_start = True
            # Get the next two lines (header and first data)
            header_line = next(f).strip()
            first_data_line = next(f).strip()
            break

print("Header line found:")
print(header_line)
print("\nFirst data line example:")
print(first_data_line)

# Extract platform annotation data
from io import StringIO
platform_data = []
platform_start = False

with gzip.open(soft_file, 'rt') as f:
    for line in f:
        if '!Platform_table_begin' in line:
            platform_start = True
            continue
        elif '!Platform_table_end' in line:
            break
        elif platform_start:
            platform_data.append(line.strip())

# Convert to dataframe
gene_annotation = pd.read_csv(StringIO('\n'.join(platform_data)), sep='\t')

# Preview gene annotation data
print("\nGene annotation shape:", gene_annotation.shape)
print("\nGene annotation columns:", gene_annotation.columns.tolist())
print("\nFirst few rows preview:")
print(gene_annotation.head().to_string())

# Look for columns that might contain gene symbols
symbol_candidates = [col for col in gene_annotation.columns 
                    if any(term in col.lower() 
                          for term in ['gene', 'symbol', 'entrez', 'refseq'])]
print("\nPotential gene symbol columns:", symbol_candidates)
from io import StringIO

# First inspect the SOFT file content to understand structure
import gzip
print("Examining SOFT file content...")
with gzip.open(soft_file, 'rt') as f:
    for line in f:
        # Look for platform annotation sections that might contain gene info
        if "!Platform_table_begin" in line:
            header = next(f).strip()
            print("\nFound platform table with header:")
            print(header)
            print("\nFirst few data lines:")
            for _ in range(5):
                print(next(f).strip())
            break

# Try extracting gene annotation using different prefix patterns
gene_metadata_str = filter_content_by_prefix(soft_file, 
                                           prefixes_a=['^', '#'],
                                           unselect=True, 
                                           source_type='file',
                                           return_df_a=False)[0]

# Process the metadata string to find the section with gene annotations
annotation_lines = []
capture = False
for line in gene_metadata_str.split('\n'):
    if 'Reporter Database Entry [gene symbol]' in line:
        # Found the start of gene symbol annotations
        capture = True
        continue
    if capture and line.strip():
        if line.startswith('!'):  # End of section
            break
        annotation_lines.append(line)

if annotation_lines:
    # Convert captured lines to DataFrame
    gene_metadata = pd.read_csv(StringIO('\n'.join(annotation_lines)), sep='\t')
    
    print("\nAvailable columns in gene annotation data:")
    print(gene_metadata.columns.tolist())
    
    # Create mapping dataframe using ID and gene symbol columns
    mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL')
    
    # Apply gene mapping to convert probe-level data to gene-level data
    gene_data = apply_gene_mapping(gene_data, mapping_df)
    
    # Print shape information to confirm successful mapping
    print(f"\nShape of mapped gene expression data: {gene_data.shape}")
    print("\nFirst few gene symbols:")
    print(gene_data.index[:10])
else:
    print("\nNo gene symbol annotation section found in the SOFT file.")
# Load the clinical data that was successfully saved earlier
selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0) 

# Create minimal df with just clinical features for validation
minimal_df = selected_clinical.copy()

# Check for biased features with just clinical data
is_biased, minimal_df = judge_and_remove_biased_features(minimal_df, trait)

# Save validation info with minimal df 
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=False, # Gene mapping failed
    is_trait_available=True,
    is_biased=is_biased, 
    df=minimal_df,
    note="Failed to extract gene symbol annotations from SOFT file"
)

# Do not save linked data since processing was unsuccessful