File size: 10,439 Bytes
61e25af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Obesity"
cohort = "GSE158237"
# Input paths
in_trait_dir = "../DATA/GEO/Obesity"
in_cohort_dir = "../DATA/GEO/Obesity/GSE158237"
# Output paths
out_data_file = "./output/preprocess/3/Obesity/GSE158237.csv"
out_gene_data_file = "./output/preprocess/3/Obesity/gene_data/GSE158237.csv"
out_clinical_data_file = "./output/preprocess/3/Obesity/clinical_data/GSE158237.csv"
json_path = "./output/preprocess/3/Obesity/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Based on series title and summary mentioning RNA extraction and transcriptomics,
# this dataset likely contains gene expression data
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
trait_row = 10 # BMI data in Feature 10
age_row = 1 # Age data in Feature 1
gender_row = 2 # Sex data in Feature 2
# 2.2 Data Type Conversion Functions
def convert_trait(value):
# Convert BMI value to binary (0 for non-obese, 1 for obese)
if pd.isna(value):
return None
try:
bmi = float(value.split(': ')[1])
return 1 if bmi >= 30 else 0 # Standard obesity threshold
except:
return None
def convert_age(value):
# Convert age to continuous value
if pd.isna(value):
return None
try:
age = float(value.split(': ')[1])
return age
except:
return None
def convert_gender(value):
# Convert sex to binary (0 for female, 1 for male)
if pd.isna(value):
return None
try:
sex = int(value.split(': ')[1])
return 1 if sex == 1 else 0 # Assuming Sex:1 is male and Sex:2 is female
except:
return None
# 3. Save Metadata
# Conduct initial filtering
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None))
# 4. Clinical Feature Extraction
# Since trait_row is not None, extract clinical features
if trait_row is not None:
clinical_features = geo_select_clinical_features(clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender)
# Preview the extracted features
preview = preview_df(clinical_features)
print("Preview of clinical features:", preview)
# Save to CSV
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# From the output, we can see the identifiers appear to be numeric probe IDs (e.g. 16657436)
# rather than human gene symbols (which would look like BRCA1, TP53 etc)
# These need to be mapped to gene symbols for biological interpretation
requires_gene_mapping = True
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene annotation from SOFT file
# Use different prefix filters to capture platform annotation with gene symbols
gene_annotation = filter_content_by_prefix(soft_file,
prefixes_a=['!Platform_table_begin'],
unselect=False,
source_type='file',
return_df_a=True)[0]
# Preview gene annotation data
print("Gene annotation shape:", gene_annotation.shape)
print("\nGene annotation columns:", list(gene_annotation.columns))
print("\nGene annotation preview:")
print(preview_df(gene_annotation))
# Print non-null values for each column to help identify useful columns
print("\nNumber of non-null values in each column:")
print(gene_annotation.count())
# Print example rows showing ID and gene symbol columns
print("\nExample rows with ID and gene symbol information:")
print(gene_annotation[['ID', 'Symbol']].head(10).to_string())
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# First examine the raw SOFT file content to locate platform annotation section
import gzip
platform_start = False
header_line = None
first_data_line = None
with gzip.open(soft_file, 'rt') as f:
for line in f:
if '!Platform_table_begin' in line:
platform_start = True
# Get the next two lines (header and first data)
header_line = next(f).strip()
first_data_line = next(f).strip()
break
print("Header line found:")
print(header_line)
print("\nFirst data line example:")
print(first_data_line)
# Extract platform annotation data
from io import StringIO
platform_data = []
platform_start = False
with gzip.open(soft_file, 'rt') as f:
for line in f:
if '!Platform_table_begin' in line:
platform_start = True
continue
elif '!Platform_table_end' in line:
break
elif platform_start:
platform_data.append(line.strip())
# Convert to dataframe
gene_annotation = pd.read_csv(StringIO('\n'.join(platform_data)), sep='\t')
# Preview gene annotation data
print("\nGene annotation shape:", gene_annotation.shape)
print("\nGene annotation columns:", gene_annotation.columns.tolist())
print("\nFirst few rows preview:")
print(gene_annotation.head().to_string())
# Look for columns that might contain gene symbols
symbol_candidates = [col for col in gene_annotation.columns
if any(term in col.lower()
for term in ['gene', 'symbol', 'entrez', 'refseq'])]
print("\nPotential gene symbol columns:", symbol_candidates)
from io import StringIO
# First inspect the SOFT file content to understand structure
import gzip
print("Examining SOFT file content...")
with gzip.open(soft_file, 'rt') as f:
for line in f:
# Look for platform annotation sections that might contain gene info
if "!Platform_table_begin" in line:
header = next(f).strip()
print("\nFound platform table with header:")
print(header)
print("\nFirst few data lines:")
for _ in range(5):
print(next(f).strip())
break
# Try extracting gene annotation using different prefix patterns
gene_metadata_str = filter_content_by_prefix(soft_file,
prefixes_a=['^', '#'],
unselect=True,
source_type='file',
return_df_a=False)[0]
# Process the metadata string to find the section with gene annotations
annotation_lines = []
capture = False
for line in gene_metadata_str.split('\n'):
if 'Reporter Database Entry [gene symbol]' in line:
# Found the start of gene symbol annotations
capture = True
continue
if capture and line.strip():
if line.startswith('!'): # End of section
break
annotation_lines.append(line)
if annotation_lines:
# Convert captured lines to DataFrame
gene_metadata = pd.read_csv(StringIO('\n'.join(annotation_lines)), sep='\t')
print("\nAvailable columns in gene annotation data:")
print(gene_metadata.columns.tolist())
# Create mapping dataframe using ID and gene symbol columns
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL')
# Apply gene mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(gene_data, mapping_df)
# Print shape information to confirm successful mapping
print(f"\nShape of mapped gene expression data: {gene_data.shape}")
print("\nFirst few gene symbols:")
print(gene_data.index[:10])
else:
print("\nNo gene symbol annotation section found in the SOFT file.")
# Load the clinical data that was successfully saved earlier
selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0)
# Create minimal df with just clinical features for validation
minimal_df = selected_clinical.copy()
# Check for biased features with just clinical data
is_biased, minimal_df = judge_and_remove_biased_features(minimal_df, trait)
# Save validation info with minimal df
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=False, # Gene mapping failed
is_trait_available=True,
is_biased=is_biased,
df=minimal_df,
note="Failed to extract gene symbol annotations from SOFT file"
)
# Do not save linked data since processing was unsuccessful |