File size: 5,004 Bytes
61e25af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Obesity"
cohort = "GSE158850"

# Input paths
in_trait_dir = "../DATA/GEO/Obesity"
in_cohort_dir = "../DATA/GEO/Obesity/GSE158850"

# Output paths
out_data_file = "./output/preprocess/3/Obesity/GSE158850.csv"
out_gene_data_file = "./output/preprocess/3/Obesity/gene_data/GSE158850.csv"
out_clinical_data_file = "./output/preprocess/3/Obesity/clinical_data/GSE158850.csv"
json_path = "./output/preprocess/3/Obesity/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Based on series title and design, this appears to be skeletal muscle transcriptome data
is_gene_available = True

# 2.1 Data Availability
# Trait: No specific obesity measurement values are provided
trait_row = None

# Age: Background info indicates having young and elderly groups, but not specific ages
age_row = None 

# Gender: Feature 1 shows mix of male/female
gender_row = None

# 2.2 Data Type Conversion Functions
def convert_trait(x):
    # Not used since trait data not available
    return None

def convert_age(x): 
    # Not used since age data not available
    return None
    
def convert_gender(x):
    # Not used since gender data not available
    return None

# 3. Save metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Skip clinical feature extraction since trait_row is None
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
requires_gene_mapping = True
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene annotation from SOFT file and get meaningful data 
gene_annotation = get_gene_annotation(soft_file)

# Preview gene annotation data
print("Gene annotation shape:", gene_annotation.shape)
print("\nGene annotation preview:")
print(preview_df(gene_annotation))

print("\nNumber of non-null values in each column:")
print(gene_annotation.count())

# Print example rows showing the mapping information columns
print("\nSample mapping columns ('ID' and 'GENE_SYMBOL'):")
print("\nFirst 5 rows:")
print(gene_annotation[['ID', 'GENE_SYMBOL']].head().to_string())

print("\nNote: Gene mapping will use:")
print("'ID' column: Probe identifiers") 
print("'GENE_SYMBOL' column: Contains gene symbol information")
# Create mapping between probe IDs and gene symbols
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')

# Apply gene mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(gene_data, mapping_data)

# Verify the result
print("Shape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few rows after mapping:")
print(gene_data.head())
print("\nFirst 20 gene symbols:")
print(gene_data.index[:20])
# 1. Normalize and save gene data
gene_data.index = gene_data.index.str.replace('-mRNA', '')
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)

# Create empty DataFrame for validation since we lack clinical data
empty_df = pd.DataFrame() 

# Validate and save cohort info, marking as biased due to lack of trait data
validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path, 
    is_gene_available=True,
    is_trait_available=False,
    is_biased=True,
    df=empty_df,
    note="Study has gene expression data but lacks usable clinical trait information for obesity analysis"
)