File size: 6,797 Bytes
61e25af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Obesity"
cohort = "GSE181339"
# Input paths
in_trait_dir = "../DATA/GEO/Obesity"
in_cohort_dir = "../DATA/GEO/Obesity/GSE181339"
# Output paths
out_data_file = "./output/preprocess/3/Obesity/GSE181339.csv"
out_gene_data_file = "./output/preprocess/3/Obesity/gene_data/GSE181339.csv"
out_clinical_data_file = "./output/preprocess/3/Obesity/clinical_data/GSE181339.csv"
json_path = "./output/preprocess/3/Obesity/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Yes - this is a microarray experiment with PBMC RNA samples
is_gene_available = True
# 2.1 Data Availability
# The trait (obesity) can be inferred from group field (row 1)
trait_row = 1
# Age data is available in row 2
age_row = 2
# Gender data is available in row 0
gender_row = 0
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> Optional[int]:
"""Convert obesity status to binary (0: Normal weight, 1: Overweight/Obese)"""
if not value or ':' not in value:
return None
group = value.split(':')[1].strip()
if group == 'NW':
return 0
elif group == 'OW/OB':
return 1
elif group == 'MONW': # Metabolically obese normal-weight should be labeled as obese
return 1
return None
def convert_age(value: str) -> Optional[float]:
"""Convert age to continuous values"""
if not value or ':' not in value:
return None
try:
return float(value.split(':')[1].strip())
except:
return None
def convert_gender(value: str) -> Optional[int]:
"""Convert gender to binary (0: Female, 1: Male)"""
if not value or ':' not in value:
return None
gender = value.split(':')[1].strip().lower()
if gender == 'woman':
return 0
elif gender == 'man':
return 1
return None
# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Clinical Feature Extraction
if trait_row is not None:
# Extract clinical features
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview extracted features
preview = preview_df(clinical_features)
print("Preview of extracted clinical features:")
print(preview)
# Save to CSV
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# Based on the output shown, the gene identifiers are numeric IDs (e.g. '7', '8', '15', etc)
# These are not standard human gene symbols and will need to be mapped
requires_gene_mapping = True
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene annotation from SOFT file and get meaningful data
gene_annotation = get_gene_annotation(soft_file)
# Preview gene annotation data
print("Gene annotation shape:", gene_annotation.shape)
print("\nGene annotation preview:")
print(preview_df(gene_annotation))
print("\nNumber of non-null values in each column:")
print(gene_annotation.count())
# Print example rows showing the mapping information columns
print("\nSample mapping columns ('ID' and 'GENE_SYMBOL'):")
print("\nFirst 5 rows:")
print(gene_annotation[['ID', 'GENE_SYMBOL']].head().to_string())
print("\nNote: Gene mapping will use:")
print("'ID' column: Probe identifiers")
print("'GENE_SYMBOL' column: Contains gene symbol information")
# 1. Get probe-to-gene mapping from annotation data
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
# 2. Apply mapping to get gene expression values
gene_data = apply_gene_mapping(gene_data, mapping_df)
# 3. Preview the result
print("Shape of gene expression data after mapping:", gene_data.shape)
print("\nPreview of gene expression data:")
print(gene_data.head())
# 1. Load clinical data and save normalized gene data
selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0)
gene_data.index = gene_data.index.str.replace('-mRNA', '')
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biased features and remove them if needed
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note="Study examining gene expression changes in adipose tissue under different protein diets during energy restriction"
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |