File size: 5,872 Bytes
61e25af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Obesity"
cohort = "GSE271700"
# Input paths
in_trait_dir = "../DATA/GEO/Obesity"
in_cohort_dir = "../DATA/GEO/Obesity/GSE271700"
# Output paths
out_data_file = "./output/preprocess/3/Obesity/GSE271700.csv"
out_gene_data_file = "./output/preprocess/3/Obesity/gene_data/GSE271700.csv"
out_clinical_data_file = "./output/preprocess/3/Obesity/clinical_data/GSE271700.csv"
json_path = "./output/preprocess/3/Obesity/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# This is whole-genome microarray data, so gene expression data should be available
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
trait_row = 3 # phenotype indicates diabetes remission response
age_row = 1 # age data available
gender_row = 0 # gender data available
# 2.2 Data Type Conversion Functions
def convert_trait(x):
if not isinstance(x, str):
return None
value = x.split(': ')[-1].strip()
if value == 'Responder':
return 1
elif value == 'Non-Responder':
return 0
return None
def convert_age(x):
if not isinstance(x, str):
return None
try:
return float(x.split(': ')[-1].strip())
except:
return None
def convert_gender(x):
if not isinstance(x, str):
return None
value = x.split(': ')[-1].strip()
if value.lower() == 'female':
return 0
elif value.lower() == 'male':
return 1
return None
# 3. Save Metadata
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None)
# 4. Clinical Feature Extraction
# Since trait_row is not None, we extract clinical features
selected_clinical = geo_select_clinical_features(clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender)
# Preview the extracted features
print("Preview of selected clinical features:")
print(preview_df(selected_clinical))
# Save to CSV
selected_clinical.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# Based on the observance of gene identifiers like "100009676_at", "10000_at", etc,
# these are probe IDs from an Affymetrix microarray platform, not human gene symbols.
# The "_at" suffix is a characteristic identifier format used by Affymetrix arrays.
# These probe IDs need to be mapped to their corresponding gene symbols.
requires_gene_mapping = True
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene annotation from SOFT file and get meaningful data
# Read first 100 lines to inspect structure
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
print("First 100 lines from SOFT file to inspect structure:")
for i, line in enumerate(f):
if i < 100: # Preview structure
print(line.strip())
else:
break
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file)
# Get platform ID from SOFT file
platform_id = None
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
for line in f:
if line.startswith('!Platform_geo_accession'):
platform_id = line.split('=')[1].strip()
break
print(f"Dataset uses platform: {platform_id}")
print("Warning: Gene symbol mapping information is not available in the SOFT file or pre-compiled GPL mappings.")
print("Saving probe-level expression data for future mapping when platform annotation becomes available.")
# Save probe-level expression data
gene_data.to_csv(out_gene_data_file)
raise ValueError(
f"Cannot complete preprocessing: Platform {platform_id} annotation data is required for mapping "
"probe IDs to gene symbols, but the mapping information is not available. "
"Please obtain the platform annotation data and rerun preprocessing."
) |