File size: 5,872 Bytes
61e25af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Obesity"
cohort = "GSE271700"

# Input paths
in_trait_dir = "../DATA/GEO/Obesity"
in_cohort_dir = "../DATA/GEO/Obesity/GSE271700"

# Output paths
out_data_file = "./output/preprocess/3/Obesity/GSE271700.csv"
out_gene_data_file = "./output/preprocess/3/Obesity/gene_data/GSE271700.csv"
out_clinical_data_file = "./output/preprocess/3/Obesity/clinical_data/GSE271700.csv"
json_path = "./output/preprocess/3/Obesity/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# This is whole-genome microarray data, so gene expression data should be available
is_gene_available = True

# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
trait_row = 3  # phenotype indicates diabetes remission response
age_row = 1    # age data available 
gender_row = 0 # gender data available

# 2.2 Data Type Conversion Functions 
def convert_trait(x):
    if not isinstance(x, str):
        return None
    value = x.split(': ')[-1].strip()
    if value == 'Responder':
        return 1
    elif value == 'Non-Responder':
        return 0
    return None

def convert_age(x):
    if not isinstance(x, str):
        return None
    try:
        return float(x.split(': ')[-1].strip())
    except:
        return None

def convert_gender(x):
    if not isinstance(x, str):
        return None
    value = x.split(': ')[-1].strip()
    if value.lower() == 'female':
        return 0
    elif value.lower() == 'male':
        return 1
    return None

# 3. Save Metadata
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=trait_row is not None)

# 4. Clinical Feature Extraction
# Since trait_row is not None, we extract clinical features
selected_clinical = geo_select_clinical_features(clinical_df=clinical_data,
                                               trait=trait,
                                               trait_row=trait_row,
                                               convert_trait=convert_trait,
                                               age_row=age_row,
                                               convert_age=convert_age,
                                               gender_row=gender_row,
                                               convert_gender=convert_gender)

# Preview the extracted features
print("Preview of selected clinical features:")
print(preview_df(selected_clinical))

# Save to CSV
selected_clinical.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# Based on the observance of gene identifiers like "100009676_at", "10000_at", etc,
# these are probe IDs from an Affymetrix microarray platform, not human gene symbols.
# The "_at" suffix is a characteristic identifier format used by Affymetrix arrays.
# These probe IDs need to be mapped to their corresponding gene symbols.

requires_gene_mapping = True
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene annotation from SOFT file and get meaningful data
# Read first 100 lines to inspect structure
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
    print("First 100 lines from SOFT file to inspect structure:")
    for i, line in enumerate(f):
        if i < 100:  # Preview structure
            print(line.strip())
        else:
            break
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file)

# Get platform ID from SOFT file
platform_id = None
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
    for line in f:
        if line.startswith('!Platform_geo_accession'):
            platform_id = line.split('=')[1].strip()
            break

print(f"Dataset uses platform: {platform_id}")
print("Warning: Gene symbol mapping information is not available in the SOFT file or pre-compiled GPL mappings.")
print("Saving probe-level expression data for future mapping when platform annotation becomes available.")

# Save probe-level expression data
gene_data.to_csv(out_gene_data_file)

raise ValueError(
    f"Cannot complete preprocessing: Platform {platform_id} annotation data is required for mapping "
    "probe IDs to gene symbols, but the mapping information is not available. "
    "Please obtain the platform annotation data and rerun preprocessing."
)