File size: 7,557 Bytes
61e25af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Obesity"
cohort = "GSE281144"

# Input paths
in_trait_dir = "../DATA/GEO/Obesity"
in_cohort_dir = "../DATA/GEO/Obesity/GSE281144"

# Output paths
out_data_file = "./output/preprocess/3/Obesity/GSE281144.csv"
out_gene_data_file = "./output/preprocess/3/Obesity/gene_data/GSE281144.csv"
out_clinical_data_file = "./output/preprocess/3/Obesity/clinical_data/GSE281144.csv"
json_path = "./output/preprocess/3/Obesity/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Based on the series summary mentioning "gene expression (GE) determined by microarray"
is_gene_available = True

# 2.1 Data Row Identifiers
# Trait (diabetes status) is in row 1
trait_row = 1  
# No age data available 
age_row = None
# Gender data in row 0
gender_row = 0

# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> Optional[int]:
    """Convert diabetes status to binary (0: Control, 1: Diabetic)"""
    if not isinstance(value, str):
        return None
    value = value.lower()
    if 'diabetic' in value:
        return 1 
    elif 'control' in value:
        return 0
    return None

def convert_gender(value: str) -> Optional[int]:
    """Convert gender to binary (0: Female, 1: Male)"""
    if not isinstance(value, str):
        return None
    value = value.lower()
    if ':' in value:
        value = value.split(':')[1].strip()
    if 'female' in value:
        return 0
    elif 'male' in value:
        return 1
    return None

# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Extract Clinical Features
if trait_row is not None:
    clinical_features = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the processed clinical data
    preview = preview_df(clinical_features)
    print("Preview of processed clinical data:", preview)
    
    # Save clinical features
    clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# Looking at the identifiers ending in '_st', these are from an Affymetrix microarray platform
# and need to be mapped to human gene symbols for proper analysis
requires_gene_mapping = True
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene annotation by reading the SOFT file and skipping header lines
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
    lines = []
    for line in f:
        if line.startswith('!platform_table_begin'):
            next(f)  # Skip the header line
            for data_line in f:
                if data_line.startswith('!platform_table_end'):
                    break
                lines.append(data_line)
            break

# Convert to DataFrame
gene_annotation = pd.read_csv(io.StringIO(''.join(lines)), sep='\t')

# Preview columns and content
print("Gene annotation shape:", gene_annotation.shape)
print("\nColumns in annotation data:")
print(gene_annotation.columns.tolist())

# Print example rows showing probe ID and gene symbol columns 
print("\nFirst 5 rows of key mapping columns:")
if 'ID' in gene_annotation.columns and 'Gene Symbol' in gene_annotation.columns:
    print(gene_annotation[['ID', 'Gene Symbol']].head().to_string())
else:
    # Show all columns for the first few rows to identify mapping information
    print(gene_annotation.head().to_string())
# Create clean probe ID column
gene_annotation['ID'] = gene_annotation.iloc[:, 0].str.split('.').str[0] + '_st'

# Extract gene symbols from annotation strings
def extract_genes(annotation):
    if pd.isna(annotation):
        return []
    parts = str(annotation).split(' // ')
    # Gene symbols typically appear after accession IDs
    symbols = [parts[i] for i in range(1, len(parts), 3) if i < len(parts)]
    return symbols

# Create mapping dataframe with probe IDs and gene symbols
mapping_data = pd.DataFrame({
    'ID': gene_annotation['ID'],
    'Gene': gene_annotation.iloc[:, 7].apply(extract_genes)
})

# Apply mapping using library function
gene_data = apply_gene_mapping(gene_data, mapping_data)

# Preview results
print("Shape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few rows of mapped gene data:")
print(gene_data.head())
# Create clean probe ID column
gene_annotation['ID'] = gene_annotation.iloc[:, 0].str.split('.').str[0] + '_st'

# Create mapping dataframe with probe IDs and gene symbols using extract_human_gene_symbols
mapping_data = pd.DataFrame({
    'ID': gene_annotation['ID'], 
    'Gene': gene_annotation.iloc[:, 7].apply(extract_human_gene_symbols)
})

# Apply mapping using library function
gene_data = apply_gene_mapping(gene_data, mapping_data)

# 1. Load clinical data and save normalized gene data
selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0)
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for biased features and remove them if needed 
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path, 
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note="Study examining gene expression changes in adipose tissue under different protein diets during energy restriction"
)

# 6. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)