File size: 7,557 Bytes
61e25af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Obesity"
cohort = "GSE281144"
# Input paths
in_trait_dir = "../DATA/GEO/Obesity"
in_cohort_dir = "../DATA/GEO/Obesity/GSE281144"
# Output paths
out_data_file = "./output/preprocess/3/Obesity/GSE281144.csv"
out_gene_data_file = "./output/preprocess/3/Obesity/gene_data/GSE281144.csv"
out_clinical_data_file = "./output/preprocess/3/Obesity/clinical_data/GSE281144.csv"
json_path = "./output/preprocess/3/Obesity/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Based on the series summary mentioning "gene expression (GE) determined by microarray"
is_gene_available = True
# 2.1 Data Row Identifiers
# Trait (diabetes status) is in row 1
trait_row = 1
# No age data available
age_row = None
# Gender data in row 0
gender_row = 0
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> Optional[int]:
"""Convert diabetes status to binary (0: Control, 1: Diabetic)"""
if not isinstance(value, str):
return None
value = value.lower()
if 'diabetic' in value:
return 1
elif 'control' in value:
return 0
return None
def convert_gender(value: str) -> Optional[int]:
"""Convert gender to binary (0: Female, 1: Male)"""
if not isinstance(value, str):
return None
value = value.lower()
if ':' in value:
value = value.split(':')[1].strip()
if 'female' in value:
return 0
elif 'male' in value:
return 1
return None
# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Extract Clinical Features
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the processed clinical data
preview = preview_df(clinical_features)
print("Preview of processed clinical data:", preview)
# Save clinical features
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# Looking at the identifiers ending in '_st', these are from an Affymetrix microarray platform
# and need to be mapped to human gene symbols for proper analysis
requires_gene_mapping = True
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene annotation by reading the SOFT file and skipping header lines
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
lines = []
for line in f:
if line.startswith('!platform_table_begin'):
next(f) # Skip the header line
for data_line in f:
if data_line.startswith('!platform_table_end'):
break
lines.append(data_line)
break
# Convert to DataFrame
gene_annotation = pd.read_csv(io.StringIO(''.join(lines)), sep='\t')
# Preview columns and content
print("Gene annotation shape:", gene_annotation.shape)
print("\nColumns in annotation data:")
print(gene_annotation.columns.tolist())
# Print example rows showing probe ID and gene symbol columns
print("\nFirst 5 rows of key mapping columns:")
if 'ID' in gene_annotation.columns and 'Gene Symbol' in gene_annotation.columns:
print(gene_annotation[['ID', 'Gene Symbol']].head().to_string())
else:
# Show all columns for the first few rows to identify mapping information
print(gene_annotation.head().to_string())
# Create clean probe ID column
gene_annotation['ID'] = gene_annotation.iloc[:, 0].str.split('.').str[0] + '_st'
# Extract gene symbols from annotation strings
def extract_genes(annotation):
if pd.isna(annotation):
return []
parts = str(annotation).split(' // ')
# Gene symbols typically appear after accession IDs
symbols = [parts[i] for i in range(1, len(parts), 3) if i < len(parts)]
return symbols
# Create mapping dataframe with probe IDs and gene symbols
mapping_data = pd.DataFrame({
'ID': gene_annotation['ID'],
'Gene': gene_annotation.iloc[:, 7].apply(extract_genes)
})
# Apply mapping using library function
gene_data = apply_gene_mapping(gene_data, mapping_data)
# Preview results
print("Shape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few rows of mapped gene data:")
print(gene_data.head())
# Create clean probe ID column
gene_annotation['ID'] = gene_annotation.iloc[:, 0].str.split('.').str[0] + '_st'
# Create mapping dataframe with probe IDs and gene symbols using extract_human_gene_symbols
mapping_data = pd.DataFrame({
'ID': gene_annotation['ID'],
'Gene': gene_annotation.iloc[:, 7].apply(extract_human_gene_symbols)
})
# Apply mapping using library function
gene_data = apply_gene_mapping(gene_data, mapping_data)
# 1. Load clinical data and save normalized gene data
selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0)
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biased features and remove them if needed
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note="Study examining gene expression changes in adipose tissue under different protein diets during energy restriction"
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |