File size: 5,711 Bytes
61e25af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Obsessive-Compulsive_Disorder"
cohort = "GSE60190"
# Input paths
in_trait_dir = "../DATA/GEO/Obsessive-Compulsive_Disorder"
in_cohort_dir = "../DATA/GEO/Obsessive-Compulsive_Disorder/GSE60190"
# Output paths
out_data_file = "./output/preprocess/3/Obsessive-Compulsive_Disorder/GSE60190.csv"
out_gene_data_file = "./output/preprocess/3/Obsessive-Compulsive_Disorder/gene_data/GSE60190.csv"
out_clinical_data_file = "./output/preprocess/3/Obsessive-Compulsive_Disorder/clinical_data/GSE60190.csv"
json_path = "./output/preprocess/3/Obsessive-Compulsive_Disorder/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# Yes, this is gene expression data from Illumina HumanHT-12 microarray as stated in Series_overall_design
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data row identification
# For trait (OCD): Use row 3 'dx' (diagnosis) which has OCD vs Control
trait_row = 3
# For age: Available in row 5
age_row = 5
# For gender: Available in row 7 'Sex'
gender_row = 7
# 2.2 Data type conversion functions
def convert_trait(x):
"""Convert diagnosis to binary: OCD=1, Control=0"""
if pd.isna(x):
return None
value = x.split(': ')[1] if ': ' in x else x
if value == 'OCD':
return 1
elif value == 'Control':
return 0
else:
return None
def convert_age(x):
"""Convert age to continuous numeric value"""
if pd.isna(x):
return None
value = x.split(': ')[1] if ': ' in x else x
try:
return float(value)
except:
return None
def convert_gender(x):
"""Convert gender to binary: M=1, F=0"""
if pd.isna(x):
return None
value = x.split(': ')[1] if ': ' in x else x
if value == 'M':
return 1
elif value == 'F':
return 0
else:
return None
# 3. Save initial metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical Feature Extraction
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the data
print("Preview of clinical features:")
print(preview_df(selected_clinical_df))
# Save to CSV
selected_clinical_df.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# Identifiers starting with ILMN_ indicate these are Illumina probe IDs, not gene symbols
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)
# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# 1. ID column stores Illumina probe IDs, Symbol column stores gene symbols
# 2. Extract mapping between probe IDs and gene symbols
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
# 3. Apply gene mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Print head of resulting gene expression data
print("\nFirst few rows of gene expression data:")
print(gene_data.head())
print("\nShape:", gene_data.shape)
# Reload clinical data that was processed earlier
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
# 3. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and information saving
note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data only if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |