File size: 5,933 Bytes
61e25af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Obstructive_sleep_apnea"
cohort = "GSE133601"

# Input paths
in_trait_dir = "../DATA/GEO/Obstructive_sleep_apnea"
in_cohort_dir = "../DATA/GEO/Obstructive_sleep_apnea/GSE133601"

# Output paths
out_data_file = "./output/preprocess/3/Obstructive_sleep_apnea/GSE133601.csv"
out_gene_data_file = "./output/preprocess/3/Obstructive_sleep_apnea/gene_data/GSE133601.csv"
out_clinical_data_file = "./output/preprocess/3/Obstructive_sleep_apnea/clinical_data/GSE133601.csv"
json_path = "./output/preprocess/3/Obstructive_sleep_apnea/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")

# Get dictionary of unique values per row 
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# 1. Gene Expression Data Availability
# Based on background info mentioning "gene expression in peripheral blood mononuclear cells" and CD1D/RAB20 genes
is_gene_available = True

# 2.1 Data Availability
# trait: Can be inferred from timepoint (pre vs post CPAP)
trait_row = 2  

# Age and gender are not available in sample characteristics
age_row = None
gender_row = None

# 2.2 Convert Functions
def convert_trait(value: str) -> int:
    """Convert pre/post CPAP to binary OSA status
    pre-CPAP: 1 (has OSA)
    post-CPAP: 0 (treated OSA)"""
    if not value or ':' not in value:
        return None
    value = value.split(':')[1].strip().lower()
    if 'pre-cpap' in value:
        return 1
    elif 'post-cpap' in value:
        return 0
    return None

def convert_age(value: str) -> float:
    """Convert age to float"""
    return None  # Not available

def convert_gender(value: str) -> int:
    """Convert gender to binary"""
    return None  # Not available

# 3. Save metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)

# 4. Extract clinical features
if trait_row is not None:
    clinical_df = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age, 
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the data
    print("Preview of clinical data:")
    print(preview_df(clinical_df))
    
    # Save to CSV
    clinical_df.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Examine data structure
print("Data structure and head:")
print(genetic_data.head())

print("\nShape:", genetic_data.shape)

print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])

# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# These appear to be Affymetrix probe IDs (ending in "_at"), not gene symbols
# Need to map these IDs to human gene symbols for analysis
requires_gene_mapping = True
# Extract gene annotation data from between Platform table markers
gene_annotation = filter_content_by_prefix(soft_file_path, 
                                         prefixes_a=['!Platform_table_begin'], 
                                         prefixes_b=['!Platform_table_end'],
                                         unselect=True,
                                         source_type='file',
                                         return_df_a=True,
                                         return_df_b=False)[0]

# Display column names and preview data 
print("Column names:")
print(gene_annotation.columns)

print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))

# Print first few rows to see full data structure
print("\nFirst few rows of annotation data:")
print(gene_annotation.head())
# Get gene annotation and create mapping
gene_annotation = get_gene_annotation(soft_file_path)
probe_gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Description')

# Apply mapping to convert probe-level to gene-level data
gene_data = apply_gene_mapping(genetic_data, probe_gene_mapping)

# Preview results
print("Preview of mapped gene expression data:")
print(gene_data.head())
print("\nShape:", gene_data.shape)
print("\nFirst 10 gene symbols:")
print(list(gene_data.index)[:10])
# Reload clinical data that was processed earlier
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)

# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)

# 3. Handle missing values systematically  
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and information saving
note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort, 
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note=note
)

# 6. Save linked data only if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)