File size: 5,933 Bytes
61e25af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Obstructive_sleep_apnea"
cohort = "GSE133601"
# Input paths
in_trait_dir = "../DATA/GEO/Obstructive_sleep_apnea"
in_cohort_dir = "../DATA/GEO/Obstructive_sleep_apnea/GSE133601"
# Output paths
out_data_file = "./output/preprocess/3/Obstructive_sleep_apnea/GSE133601.csv"
out_gene_data_file = "./output/preprocess/3/Obstructive_sleep_apnea/gene_data/GSE133601.csv"
out_clinical_data_file = "./output/preprocess/3/Obstructive_sleep_apnea/clinical_data/GSE133601.csv"
json_path = "./output/preprocess/3/Obstructive_sleep_apnea/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# Based on background info mentioning "gene expression in peripheral blood mononuclear cells" and CD1D/RAB20 genes
is_gene_available = True
# 2.1 Data Availability
# trait: Can be inferred from timepoint (pre vs post CPAP)
trait_row = 2
# Age and gender are not available in sample characteristics
age_row = None
gender_row = None
# 2.2 Convert Functions
def convert_trait(value: str) -> int:
"""Convert pre/post CPAP to binary OSA status
pre-CPAP: 1 (has OSA)
post-CPAP: 0 (treated OSA)"""
if not value or ':' not in value:
return None
value = value.split(':')[1].strip().lower()
if 'pre-cpap' in value:
return 1
elif 'post-cpap' in value:
return 0
return None
def convert_age(value: str) -> float:
"""Convert age to float"""
return None # Not available
def convert_gender(value: str) -> int:
"""Convert gender to binary"""
return None # Not available
# 3. Save metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# 4. Extract clinical features
if trait_row is not None:
clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the data
print("Preview of clinical data:")
print(preview_df(clinical_df))
# Save to CSV
clinical_df.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# These appear to be Affymetrix probe IDs (ending in "_at"), not gene symbols
# Need to map these IDs to human gene symbols for analysis
requires_gene_mapping = True
# Extract gene annotation data from between Platform table markers
gene_annotation = filter_content_by_prefix(soft_file_path,
prefixes_a=['!Platform_table_begin'],
prefixes_b=['!Platform_table_end'],
unselect=True,
source_type='file',
return_df_a=True,
return_df_b=False)[0]
# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# Print first few rows to see full data structure
print("\nFirst few rows of annotation data:")
print(gene_annotation.head())
# Get gene annotation and create mapping
gene_annotation = get_gene_annotation(soft_file_path)
probe_gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Description')
# Apply mapping to convert probe-level to gene-level data
gene_data = apply_gene_mapping(genetic_data, probe_gene_mapping)
# Preview results
print("Preview of mapped gene expression data:")
print(gene_data.head())
print("\nShape:", gene_data.shape)
print("\nFirst 10 gene symbols:")
print(list(gene_data.index)[:10])
# Reload clinical data that was processed earlier
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
# 3. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and information saving
note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data only if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |