File size: 5,693 Bytes
61e25af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Obstructive_sleep_apnea"
cohort = "GSE49800"
# Input paths
in_trait_dir = "../DATA/GEO/Obstructive_sleep_apnea"
in_cohort_dir = "../DATA/GEO/Obstructive_sleep_apnea/GSE49800"
# Output paths
out_data_file = "./output/preprocess/3/Obstructive_sleep_apnea/GSE49800.csv"
out_gene_data_file = "./output/preprocess/3/Obstructive_sleep_apnea/gene_data/GSE49800.csv"
out_clinical_data_file = "./output/preprocess/3/Obstructive_sleep_apnea/clinical_data/GSE49800.csv"
json_path = "./output/preprocess/3/Obstructive_sleep_apnea/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# Based on background info, this is microarray data from Affymetrix Genechip for measuring gene expression
is_gene_available = True
# 2.1 Row Identification
# Since this is a study comparing baseline vs CPAP treatment, with everyone having OSA initially,
# we can identify treated vs untreated from treatment row (1)
trait_row = 1
# Age and gender not provided in sample characteristics
age_row = None
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(value):
"""Convert treatment status to binary (0=baseline/untreated OSA, 1=treated)"""
if not isinstance(value, str):
return None
value = value.lower().split(': ')[-1]
if 'none' in value or 'baseline' in value:
return 0
elif 'cpap' in value:
return 1
return None
def convert_age(value):
return None
def convert_gender(value):
return None
# 3. Save Metadata
is_usable = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Clinical Feature Extraction
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
preview = preview_df(clinical_features)
# Save to file
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
clinical_features.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# The gene identifiers appear to be microarray probe IDs (e.g. 7892501)
# rather than standard human gene symbols, so they will need to be mapped
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)
# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# 1. Identify relevant columns from gene annotation data
# 'ID' contains probe IDs matching genetic data
# 'gene_assignment' contains gene symbols and other info
prob_col = 'ID'
gene_col = 'gene_assignment'
# 2. Get gene mapping dataframe - the get_gene_mapping function internally uses
# extract_human_gene_symbols() to parse gene symbols from gene_assignment text
mapping_data = get_gene_mapping(gene_annotation, prob_col, gene_col)
# 3. Apply mapping to convert probe-level to gene-level expression
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Preview the resulting gene expression data
print("Gene expression data shape:", gene_data.shape)
print("\nFirst few rows of gene expression data:")
print(gene_data.head())
print("\nFirst few gene symbols:")
print(list(gene_data.index)[:10])
# Reload clinical data that was processed earlier
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
# 3. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and information saving
note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data only if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |