File size: 5,693 Bytes
61e25af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Obstructive_sleep_apnea"
cohort = "GSE49800"

# Input paths
in_trait_dir = "../DATA/GEO/Obstructive_sleep_apnea"
in_cohort_dir = "../DATA/GEO/Obstructive_sleep_apnea/GSE49800"

# Output paths
out_data_file = "./output/preprocess/3/Obstructive_sleep_apnea/GSE49800.csv"
out_gene_data_file = "./output/preprocess/3/Obstructive_sleep_apnea/gene_data/GSE49800.csv"
out_clinical_data_file = "./output/preprocess/3/Obstructive_sleep_apnea/clinical_data/GSE49800.csv"
json_path = "./output/preprocess/3/Obstructive_sleep_apnea/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")

# Get dictionary of unique values per row 
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# 1. Gene Expression Data Availability
# Based on background info, this is microarray data from Affymetrix Genechip for measuring gene expression
is_gene_available = True

# 2.1 Row Identification
# Since this is a study comparing baseline vs CPAP treatment, with everyone having OSA initially,
# we can identify treated vs untreated from treatment row (1)
trait_row = 1

# Age and gender not provided in sample characteristics 
age_row = None
gender_row = None

# 2.2 Data Type Conversion Functions
def convert_trait(value):
    """Convert treatment status to binary (0=baseline/untreated OSA, 1=treated)"""
    if not isinstance(value, str):
        return None
    value = value.lower().split(': ')[-1]
    if 'none' in value or 'baseline' in value:
        return 0
    elif 'cpap' in value:
        return 1
    return None

def convert_age(value):
    return None

def convert_gender(value):
    return None

# 3. Save Metadata
is_usable = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=trait_row is not None
)

# 4. Clinical Feature Extraction
if trait_row is not None:
    clinical_features = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row, 
        convert_gender=convert_gender
    )
    
    # Preview the extracted features
    preview = preview_df(clinical_features)
    
    # Save to file
    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
    clinical_features.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Examine data structure
print("Data structure and head:")
print(genetic_data.head())

print("\nShape:", genetic_data.shape)

print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])

# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# The gene identifiers appear to be microarray probe IDs (e.g. 7892501)
# rather than standard human gene symbols, so they will need to be mapped
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)

# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)

print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# 1. Identify relevant columns from gene annotation data
# 'ID' contains probe IDs matching genetic data
# 'gene_assignment' contains gene symbols and other info
prob_col = 'ID'
gene_col = 'gene_assignment'

# 2. Get gene mapping dataframe - the get_gene_mapping function internally uses
# extract_human_gene_symbols() to parse gene symbols from gene_assignment text
mapping_data = get_gene_mapping(gene_annotation, prob_col, gene_col)

# 3. Apply mapping to convert probe-level to gene-level expression
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Preview the resulting gene expression data
print("Gene expression data shape:", gene_data.shape)
print("\nFirst few rows of gene expression data:")
print(gene_data.head())

print("\nFirst few gene symbols:")
print(list(gene_data.index)[:10])
# Reload clinical data that was processed earlier
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)

# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)

# 3. Handle missing values systematically  
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and information saving
note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort, 
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note=note
)

# 6. Save linked data only if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)