File size: 5,400 Bytes
61e25af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Ocular_Melanomas"
cohort = "GSE78033"
# Input paths
in_trait_dir = "../DATA/GEO/Ocular_Melanomas"
in_cohort_dir = "../DATA/GEO/Ocular_Melanomas/GSE78033"
# Output paths
out_data_file = "./output/preprocess/3/Ocular_Melanomas/GSE78033.csv"
out_gene_data_file = "./output/preprocess/3/Ocular_Melanomas/gene_data/GSE78033.csv"
out_clinical_data_file = "./output/preprocess/3/Ocular_Melanomas/clinical_data/GSE78033.csv"
json_path = "./output/preprocess/3/Ocular_Melanomas/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# Based on background info mentioning "transcriptome" and "Affymetrix Human Exon Array"
is_gene_available = True
# 2.1 Data Availability
# trait - tumor type is available in row 3
trait_row = 3
# Age and gender not available
age_row = None
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
"""Convert tumor type to binary: 0 for Primary Tumor, 1 for Metastasis"""
if not value:
return None
value = value.split(': ')[1].strip()
if value == 'Primary Tumor':
return 0
elif value == 'Metastasis':
return 1
return None
def convert_age(value: str) -> float:
return None
def convert_gender(value: str) -> int:
return None
# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Clinical Feature Extraction
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the data
preview = preview_df(selected_clinical_df)
print("Preview of clinical data:")
print(preview)
# Save to CSV
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
selected_clinical_df.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# The gene identifiers end with "_at", indicating they are likely Affymetrix probe IDs
# These need to be mapped to official gene symbols
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)
# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# Get gene mapping dataframe
# 'ID' column contains probe IDs that match gene expression data format (_at suffix)
# 'SPOT_ID' column contains gene symbols
gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='SPOT_ID')
# Convert probe-level measurements to gene expression data
gene_data = apply_gene_mapping(genetic_data, gene_mapping)
# Preview results
print("Gene data shape:", gene_data.shape)
print("\nFirst few gene symbols:", list(gene_data.index)[:5])
print("\nPreview of gene expression values:")
print(preview_df(gene_data))
# Reload clinical data that was processed earlier
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
# 3. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and information saving
note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data only if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |