File size: 4,771 Bytes
61e25af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Ocular_Melanomas"
# Input paths
tcga_root_dir = "../DATA/TCGA"
# Output paths
out_data_file = "./output/preprocess/3/Ocular_Melanomas/TCGA.csv"
out_gene_data_file = "./output/preprocess/3/Ocular_Melanomas/gene_data/TCGA.csv"
out_clinical_data_file = "./output/preprocess/3/Ocular_Melanomas/clinical_data/TCGA.csv"
json_path = "./output/preprocess/3/Ocular_Melanomas/cohort_info.json"
# 1. Select the directory for Ocular Melanomas
cohort_dir = os.path.join(tcga_root_dir, 'TCGA_Ocular_melanomas_(UVM)')
# 2. Get file paths for clinical and genetic data
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
# 3. Load both files as pandas dataframes
clinical_df = pd.read_csv(clinical_file_path, sep='\t', index_col=0)
genetic_df = pd.read_csv(genetic_file_path, sep='\t', index_col=0)
# 4. Print clinical data columns
print("Clinical data columns:")
print(clinical_df.columns.tolist())
# Mark data as available
is_gene_available = True if len(genetic_df) > 0 else False
is_trait_available = True if len(clinical_df) > 0 else False
# Initial validation
validate_and_save_cohort_info(
is_final=False,
cohort="TCGA",
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# Identify candidate demographic columns
candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth']
candidate_gender_cols = ['gender']
# Get clinical data path
clinical_file_path = os.path.join(tcga_root_dir, "UVM", "UVM.GDC_phenotype.tsv")
# Read clinical data
clinical_df = pd.read_csv(clinical_file_path, sep='\t', index_col=0)
# Preview age columns
age_preview = {}
for col in candidate_age_cols:
if col in clinical_df.columns:
age_preview[col] = clinical_df[col].head().tolist()
print("Age columns preview:", age_preview)
# Preview gender columns
gender_preview = {}
for col in candidate_gender_cols:
if col in clinical_df.columns:
gender_preview[col] = clinical_df[col].head().tolist()
print("Gender columns preview:", gender_preview)
# Define candidate demographic columns
candidate_age_cols = ['age_at_initial_pathologic_diagnosis']
candidate_gender_cols = ['gender']
print("\nCandidate age columns:", candidate_age_cols)
print("Candidate gender columns:", candidate_gender_cols)
# Preview the data
if len(candidate_age_cols) > 0:
age_data = clinical_df[candidate_age_cols]
print("\nAge column previews:")
print(preview_df(age_data))
if len(candidate_gender_cols) > 0:
gender_data = clinical_df[candidate_gender_cols]
print("\nGender column previews:")
print(preview_df(gender_data))
# Select the age column - age_at_initial_pathologic_diagnosis has valid numerical values
age_col = 'age_at_initial_pathologic_diagnosis'
# Select the gender column - gender has valid gender values
gender_col = 'gender'
# Print chosen columns
print(f"Selected age column: {age_col}")
print(f"Selected gender column: {gender_col}")
# Re-define demographic columns
age_col = 'age_at_initial_pathologic_diagnosis'
gender_col = 'gender'
# 1. Extract and standardize clinical features
trait_col = trait.replace("_", " ")
selected_clinical_df = tcga_select_clinical_features(clinical_df, trait_col, age_col, gender_col)
# 2. Normalize gene symbols in genetic data
normalized_genetic_df = normalize_gene_symbols_in_index(genetic_df)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_genetic_df.to_csv(out_gene_data_file)
# 3. Link clinical and genetic data
linked_data = pd.merge(selected_clinical_df, normalized_genetic_df.T, left_index=True, right_index=True)
# Save clinical data
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
selected_clinical_df.to_csv(out_clinical_data_file)
# 4. Handle missing values
linked_data = handle_missing_values(linked_data, trait_col)
# 5. Check for bias in trait and demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait_col)
# 6. Validate and save cohort info
note = f"Sample size after preprocessing: {len(linked_data)}. Number of genes: {len(linked_data.columns) - 3}"
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort="TCGA",
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note=note
)
# 7. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)
print(f"Linked data saved to {out_data_file}")
print("Shape of final linked data:", linked_data.shape)
else:
print("Dataset was found to be unusable and was not saved") |