File size: 5,930 Bytes
61e25af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Osteoarthritis"
cohort = "GSE142049"

# Input paths
in_trait_dir = "../DATA/GEO/Osteoarthritis"
in_cohort_dir = "../DATA/GEO/Osteoarthritis/GSE142049"

# Output paths
out_data_file = "./output/preprocess/3/Osteoarthritis/GSE142049.csv"
out_gene_data_file = "./output/preprocess/3/Osteoarthritis/gene_data/GSE142049.csv"
out_clinical_data_file = "./output/preprocess/3/Osteoarthritis/clinical_data/GSE142049.csv"
json_path = "./output/preprocess/3/Osteoarthritis/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")

# Get dictionary of unique values per row 
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# 1. Gene Expression Data Availability
# The background info mentions 'transcriptional data' and RNA isolation, so gene expression data is likely available
is_gene_available = True

# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
trait_row = 5  # trait data in first_diagnosis
age_row = 2    # age data available
gender_row = 1 # gender data available

# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
    """Convert trait value to binary: 1 for Osteoarthritis, 0 for others"""
    if not isinstance(value, str):
        return None
    value = value.split(": ")[-1].strip()
    if value == "Osteoarthritis":
        return 1
    elif value in ["Undifferentiated Spondylo-Arthropathy", "Other Inflammatory Arthritis", 
                   "Undifferentiated Inflammatory Arthritis", "Rheumatoid Arthritis",
                   "Crystal Arthritis", "Enteropathic Arthritis", "Psoriatic Arthritis", 
                   "Reactive Arthritis", "Non-Inflammatory"]:
        return 0
    return None

def convert_age(value: str) -> float:
    """Convert age value to continuous numeric"""
    if not isinstance(value, str):
        return None
    try:
        return float(value.split(": ")[-1])
    except:
        return None

def convert_gender(value: str) -> int:
    """Convert gender to binary: 0 for Female, 1 for Male"""
    if not isinstance(value, str):
        return None
    value = value.split(": ")[-1].strip()
    if value == "F":
        return 0
    elif value == "M":
        return 1
    return None

# 3. Save initial metadata
is_trait_available = trait_row is not None
_ = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Extract clinical features
if trait_row is not None:
    selected_clinical_df = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the processed data
    preview = preview_df(selected_clinical_df)
    print(f"Preview of clinical data:\n{preview}")
    
    # Save to CSV
    selected_clinical_df.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Examine data structure
print("Data structure and head:")
print(genetic_data.head())

print("\nShape:", genetic_data.shape)

print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])

# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# The identifiers start with ILMN_, which indicates these are Illumina probe IDs
# rather than standard human gene symbols. These need to be mapped to gene symbols.
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)

# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)

print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# Get mapping between probe IDs and gene symbols
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')

# Apply mapping to convert probe measurements to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Display summary info about the gene data
print("Gene data shape:", gene_data.shape)
print("\nFirst few rows of gene data:")
print(gene_data.head())
# Reload clinical data that was processed earlier
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)

# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)

# 3. Handle missing values systematically  
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and information saving
note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort, 
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note=note
)

# 6. Save linked data only if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)