File size: 5,930 Bytes
61e25af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Osteoarthritis"
cohort = "GSE142049"
# Input paths
in_trait_dir = "../DATA/GEO/Osteoarthritis"
in_cohort_dir = "../DATA/GEO/Osteoarthritis/GSE142049"
# Output paths
out_data_file = "./output/preprocess/3/Osteoarthritis/GSE142049.csv"
out_gene_data_file = "./output/preprocess/3/Osteoarthritis/gene_data/GSE142049.csv"
out_clinical_data_file = "./output/preprocess/3/Osteoarthritis/clinical_data/GSE142049.csv"
json_path = "./output/preprocess/3/Osteoarthritis/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# The background info mentions 'transcriptional data' and RNA isolation, so gene expression data is likely available
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
trait_row = 5 # trait data in first_diagnosis
age_row = 2 # age data available
gender_row = 1 # gender data available
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
"""Convert trait value to binary: 1 for Osteoarthritis, 0 for others"""
if not isinstance(value, str):
return None
value = value.split(": ")[-1].strip()
if value == "Osteoarthritis":
return 1
elif value in ["Undifferentiated Spondylo-Arthropathy", "Other Inflammatory Arthritis",
"Undifferentiated Inflammatory Arthritis", "Rheumatoid Arthritis",
"Crystal Arthritis", "Enteropathic Arthritis", "Psoriatic Arthritis",
"Reactive Arthritis", "Non-Inflammatory"]:
return 0
return None
def convert_age(value: str) -> float:
"""Convert age value to continuous numeric"""
if not isinstance(value, str):
return None
try:
return float(value.split(": ")[-1])
except:
return None
def convert_gender(value: str) -> int:
"""Convert gender to binary: 0 for Female, 1 for Male"""
if not isinstance(value, str):
return None
value = value.split(": ")[-1].strip()
if value == "F":
return 0
elif value == "M":
return 1
return None
# 3. Save initial metadata
is_trait_available = trait_row is not None
_ = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Extract clinical features
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the processed data
preview = preview_df(selected_clinical_df)
print(f"Preview of clinical data:\n{preview}")
# Save to CSV
selected_clinical_df.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# The identifiers start with ILMN_, which indicates these are Illumina probe IDs
# rather than standard human gene symbols. These need to be mapped to gene symbols.
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)
# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# Get mapping between probe IDs and gene symbols
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
# Apply mapping to convert probe measurements to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Display summary info about the gene data
print("Gene data shape:", gene_data.shape)
print("\nFirst few rows of gene data:")
print(gene_data.head())
# Reload clinical data that was processed earlier
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
# 3. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and information saving
note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data only if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |