File size: 5,510 Bytes
61e25af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Osteoarthritis"
cohort = "GSE236924"
# Input paths
in_trait_dir = "../DATA/GEO/Osteoarthritis"
in_cohort_dir = "../DATA/GEO/Osteoarthritis/GSE236924"
# Output paths
out_data_file = "./output/preprocess/3/Osteoarthritis/GSE236924.csv"
out_gene_data_file = "./output/preprocess/3/Osteoarthritis/gene_data/GSE236924.csv"
out_clinical_data_file = "./output/preprocess/3/Osteoarthritis/clinical_data/GSE236924.csv"
json_path = "./output/preprocess/3/Osteoarthritis/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Assess gene expression data availability
# Based on series title containing "array" and series design mentioning joint tissue comparison,
# this likely contains gene expression data
is_gene_available = True
# 2.1 Identify data rows
# From Sample Characteristics, disease status is in row 0
trait_row = 0
# Age and gender not available in sample characteristics
age_row = None
gender_row = None
# 2.2 Define conversion functions
def convert_trait(value: str) -> Optional[int]:
"""Convert OA status to binary (0: no OA, 1: has OA)"""
if not value or ':' not in value:
return None
value = value.split(':')[1].strip().upper()
if value == 'OA':
return 1
elif value == 'CONTROL':
return 0
return None
def convert_age(value: str) -> Optional[float]:
"""Convert age to float"""
return None # Not used since age data unavailable
def convert_gender(value: str) -> Optional[int]:
"""Convert gender to binary (0: female, 1: male)"""
return None # Not used since gender data unavailable
# 3. Save metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Extract clinical features since trait data is available
clinical_df = geo_select_clinical_features(clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait)
# Preview and save clinical data
print(preview_df(clinical_df))
clinical_df.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# Based on the gene identifier format (e.g. '1007_s_at', '1053_at'), these appear to be probe IDs
# from an Affymetrix microarray platform rather than human gene symbols.
# They will need to be mapped to gene symbols for analysis.
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)
# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# Extract mapping between probe IDs and gene symbols
# From previewing data, the 'ID' column contains probe IDs matching genetic data index
# and 'Gene Symbol' contains corresponding gene symbols
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
# Apply the mapping to convert probe measurements to gene expression
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Preview the result
print("Mapped gene expression data:")
print(gene_data.head())
print("\nShape:", gene_data.shape)
# Reload clinical data that was processed earlier
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
# 3. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and information saving
note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data only if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |