File size: 5,861 Bytes
61e25af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Osteoarthritis"
cohort = "GSE55457"

# Input paths
in_trait_dir = "../DATA/GEO/Osteoarthritis"
in_cohort_dir = "../DATA/GEO/Osteoarthritis/GSE55457"

# Output paths
out_data_file = "./output/preprocess/3/Osteoarthritis/GSE55457.csv"
out_gene_data_file = "./output/preprocess/3/Osteoarthritis/gene_data/GSE55457.csv"
out_clinical_data_file = "./output/preprocess/3/Osteoarthritis/clinical_data/GSE55457.csv"
json_path = "./output/preprocess/3/Osteoarthritis/cohort_info.json"

# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")

# Get dictionary of unique values per row 
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
    print(f"\n{row}:")
    print(values)
# 1. Gene Expression Data Availability
# Based on background info mentioning "genome-wide transcriptomic data sets (Affymetrix HG-U133 A/B)"
is_gene_available = True

# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability 
trait_row = 2  # Found under 'clinical status'
age_row = 1    # Found under 'age'
gender_row = 0  # Found under 'gender'

# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
    """Convert trait status to binary (0: not OA, 1: OA)"""
    if not value or ':' not in value:
        return None
    status = value.split(':')[1].strip().lower()
    if 'osteoarthritis' in status:
        return 1
    elif 'normal control' in status or 'rheumatoid arthritis' in status:
        return 0
    return None

def convert_age(value: str) -> float:
    """Convert age to continuous numeric value"""
    if not value or ':' not in value:
        return None
    try:
        return float(value.split(':')[1].strip())
    except:
        return None

def convert_gender(value: str) -> int:
    """Convert gender to binary (0: female, 1: male)"""
    if not value or ':' not in value:
        return None
    gender = value.split(':')[1].strip().lower()
    if 'female' in gender:
        return 0
    elif 'male' in gender:
        return 1
    return None

# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, 
                            is_gene_available=is_gene_available, 
                            is_trait_available=is_trait_available)

# 4. Clinical Feature Extraction
if trait_row is not None:
    selected_clinical = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age, 
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the extracted features
    print("Preview of extracted clinical features:")
    print(preview_df(selected_clinical))
    
    # Save clinical data
    selected_clinical.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Examine data structure
print("Data structure and head:")
print(genetic_data.head())

print("\nShape:", genetic_data.shape)

print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])

# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# These are probe IDs from Affymetrix microarray platform
# They need to be mapped to standard human gene symbols
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)

# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)

print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# 1. Identify columns for mapping
# 'ID' column in annotation contains probe IDs that match expression data
# 'Gene Symbol' column contains the target gene symbols
prob_col = 'ID'
gene_col = 'Gene Symbol'

# 2. Create mapping dataframe from gene annotation
mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)

# 3. Convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# Preview results
print("Gene expression data shape:", gene_data.shape)
print("\nPreview of gene data:")
print(preview_df(gene_data))

# Save gene data
gene_data.to_csv(out_gene_data_file)
# Reload clinical data that was processed earlier
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)

# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)

# 3. Handle missing values systematically  
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and information saving
note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort, 
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note=note
)

# 6. Save linked data only if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)