File size: 5,536 Bytes
1a37a63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Osteoarthritis"
cohort = "GSE93698"
# Input paths
in_trait_dir = "../DATA/GEO/Osteoarthritis"
in_cohort_dir = "../DATA/GEO/Osteoarthritis/GSE93698"
# Output paths
out_data_file = "./output/preprocess/3/Osteoarthritis/GSE93698.csv"
out_gene_data_file = "./output/preprocess/3/Osteoarthritis/gene_data/GSE93698.csv"
out_clinical_data_file = "./output/preprocess/3/Osteoarthritis/clinical_data/GSE93698.csv"
json_path = "./output/preprocess/3/Osteoarthritis/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
is_gene_available = True # Based on background info describing gene expression profiling
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Row Identification
trait_row = 1 # Disease state contains OA info
age_row = 2 # Age data available
gender_row = 3 # Gender data available
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
"""Convert disease state to binary OA indicator"""
if pd.isna(value):
return None
value = value.split(': ')[1].strip().lower()
if value == 'osteoarthritis':
return 1
else:
return 0
def convert_age(value: str) -> float:
"""Convert age to float"""
if pd.isna(value):
return None
try:
return float(value.split(': ')[1])
except:
return None
def convert_gender(value: str) -> int:
"""Convert gender to binary (0=female, 1=male)"""
if pd.isna(value):
return None
value = value.split(': ')[1].strip().lower()
if value == 'f':
return 0
elif value == 'm':
return 1
return None
# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical Feature Extraction
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the clinical features
print("Preview of clinical features:")
print(preview_df(clinical_features))
# Save clinical features
clinical_features.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# Review gene identifiers from gene expression data
# The identifiers appear to be Affymetrix probe IDs (e.g., '1007_s_at', '1053_at')
# rather than standard human gene symbols
# These need to be mapped to corresponding gene symbols for analysis
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)
# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# Extract probe ID and gene symbol mapping
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
# Apply mapping and aggregate probe measurements into gene expression values
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Print preview of the results
print("Gene data shape after mapping:", gene_data.shape)
print("\nFirst few rows:")
print(gene_data.head())
# Reload clinical data that was processed earlier
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
# 3. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and information saving
note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data only if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |