Liu-Hy commited on
Commit
1a37a63
·
verified ·
1 Parent(s): 61e25af

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. p3/preprocess/Intellectual_Disability/GSE59630.csv +3 -0
  3. p3/preprocess/Osteoarthritis/code/GSE93698.py +172 -0
  4. p3/preprocess/Osteoarthritis/code/GSE93720.py +171 -0
  5. p3/preprocess/Osteoarthritis/code/GSE98460.py +265 -0
  6. p3/preprocess/Osteoarthritis/code/TCGA.py +30 -0
  7. p3/preprocess/Osteoarthritis/gene_data/GSE141934.csv +0 -0
  8. p3/preprocess/Osteoarthritis/gene_data/GSE55457.csv +0 -0
  9. p3/preprocess/Osteoarthritis/gene_data/GSE93698.csv +0 -0
  10. p3/preprocess/Osteoarthritis/gene_data/GSE98460.csv +1 -0
  11. p3/preprocess/Osteoporosis/GSE224330.csv +0 -0
  12. p3/preprocess/Osteoporosis/GSE51495.csv +0 -0
  13. p3/preprocess/Osteoporosis/GSE56815.csv +0 -0
  14. p3/preprocess/Osteoporosis/clinical_data/GSE152073.csv +4 -0
  15. p3/preprocess/Osteoporosis/clinical_data/GSE20881.csv +3 -0
  16. p3/preprocess/Osteoporosis/clinical_data/GSE224330.csv +4 -0
  17. p3/preprocess/Osteoporosis/clinical_data/GSE35925.csv +4 -0
  18. p3/preprocess/Osteoporosis/clinical_data/GSE51495.csv +4 -0
  19. p3/preprocess/Osteoporosis/clinical_data/GSE56814.csv +2 -0
  20. p3/preprocess/Osteoporosis/clinical_data/GSE56815.csv +3 -0
  21. p3/preprocess/Osteoporosis/clinical_data/GSE84500.csv +2 -0
  22. p3/preprocess/Osteoporosis/code/GSE152073.py +127 -0
  23. p3/preprocess/Osteoporosis/code/GSE20881.py +166 -0
  24. p3/preprocess/Osteoporosis/code/GSE224330.py +186 -0
  25. p3/preprocess/Osteoporosis/code/GSE35925.py +176 -0
  26. p3/preprocess/Osteoporosis/code/GSE51495.py +180 -0
  27. p3/preprocess/Osteoporosis/code/GSE56814.py +166 -0
  28. p3/preprocess/Osteoporosis/code/GSE56815.py +166 -0
  29. p3/preprocess/Osteoporosis/code/GSE62589.py +146 -0
  30. p3/preprocess/Osteoporosis/code/GSE80614.py +135 -0
  31. p3/preprocess/Osteoporosis/code/GSE84500.py +159 -0
  32. p3/preprocess/Osteoporosis/code/TCGA.py +31 -0
  33. p3/preprocess/Osteoporosis/cohort_info.json +1 -0
  34. p3/preprocess/Osteoporosis/gene_data/GSE224330.csv +0 -0
  35. p3/preprocess/Osteoporosis/gene_data/GSE35925.csv +0 -0
  36. p3/preprocess/Osteoporosis/gene_data/GSE51495.csv +0 -0
  37. p3/preprocess/Osteoporosis/gene_data/GSE56815.csv +0 -0
  38. p3/preprocess/Ovarian_Cancer/GSE103737.csv +98 -0
  39. p3/preprocess/Ovarian_Cancer/GSE126308.csv +51 -0
  40. p3/preprocess/Ovarian_Cancer/GSE130402.csv +46 -0
  41. p3/preprocess/Ovarian_Cancer/clinical_data/GSE103737.csv +3 -0
  42. p3/preprocess/Ovarian_Cancer/clinical_data/GSE126132.csv +2 -0
  43. p3/preprocess/Ovarian_Cancer/clinical_data/GSE126133.csv +2 -0
  44. p3/preprocess/Ovarian_Cancer/clinical_data/GSE126308.csv +2 -0
  45. p3/preprocess/Ovarian_Cancer/clinical_data/GSE130402.csv +2 -0
  46. p3/preprocess/Ovarian_Cancer/clinical_data/GSE132342.csv +3 -0
  47. p3/preprocess/Ovarian_Cancer/clinical_data/GSE135820.csv +3 -0
  48. p3/preprocess/Ovarian_Cancer/clinical_data/GSE146553.csv +3 -0
  49. p3/preprocess/Ovarian_Cancer/clinical_data/GSE146964.csv +3 -0
  50. p3/preprocess/Ovarian_Cancer/clinical_data/GSE201525.csv +2 -0
.gitattributes CHANGED
@@ -1876,3 +1876,4 @@ p3/preprocess/Hepatitis/GSE159676.csv filter=lfs diff=lfs merge=lfs -text
1876
  p3/preprocess/Liver_Cancer/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
1877
  p3/preprocess/Liver_cirrhosis/TCGA.csv filter=lfs diff=lfs merge=lfs -text
1878
  p3/preprocess/Liver_cirrhosis/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
 
 
1876
  p3/preprocess/Liver_Cancer/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
1877
  p3/preprocess/Liver_cirrhosis/TCGA.csv filter=lfs diff=lfs merge=lfs -text
1878
  p3/preprocess/Liver_cirrhosis/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
1879
+ p3/preprocess/Intellectual_Disability/GSE59630.csv filter=lfs diff=lfs merge=lfs -text
p3/preprocess/Intellectual_Disability/GSE59630.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5c0e4fe82474252895e75acef8889788fdaa9a6ebae8e0f14431f2eec631fdb
3
+ size 25116469
p3/preprocess/Osteoarthritis/code/GSE93698.py ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Osteoarthritis"
6
+ cohort = "GSE93698"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Osteoarthritis"
10
+ in_cohort_dir = "../DATA/GEO/Osteoarthritis/GSE93698"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Osteoarthritis/GSE93698.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Osteoarthritis/gene_data/GSE93698.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Osteoarthritis/clinical_data/GSE93698.csv"
16
+ json_path = "./output/preprocess/3/Osteoarthritis/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+ print("Background Information:")
24
+ print(background_info)
25
+ print("\nSample Characteristics:")
26
+
27
+ # Get dictionary of unique values per row
28
+ unique_values_dict = get_unique_values_by_row(clinical_data)
29
+ for row, values in unique_values_dict.items():
30
+ print(f"\n{row}:")
31
+ print(values)
32
+ # 1. Gene Expression Data Availability
33
+ is_gene_available = True # Based on background info describing gene expression profiling
34
+
35
+ # 2. Variable Availability and Data Type Conversion
36
+ # 2.1 Data Row Identification
37
+ trait_row = 1 # Disease state contains OA info
38
+ age_row = 2 # Age data available
39
+ gender_row = 3 # Gender data available
40
+
41
+ # 2.2 Data Type Conversion Functions
42
+ def convert_trait(value: str) -> int:
43
+ """Convert disease state to binary OA indicator"""
44
+ if pd.isna(value):
45
+ return None
46
+ value = value.split(': ')[1].strip().lower()
47
+ if value == 'osteoarthritis':
48
+ return 1
49
+ else:
50
+ return 0
51
+
52
+ def convert_age(value: str) -> float:
53
+ """Convert age to float"""
54
+ if pd.isna(value):
55
+ return None
56
+ try:
57
+ return float(value.split(': ')[1])
58
+ except:
59
+ return None
60
+
61
+ def convert_gender(value: str) -> int:
62
+ """Convert gender to binary (0=female, 1=male)"""
63
+ if pd.isna(value):
64
+ return None
65
+ value = value.split(': ')[1].strip().lower()
66
+ if value == 'f':
67
+ return 0
68
+ elif value == 'm':
69
+ return 1
70
+ return None
71
+
72
+ # 3. Save Metadata
73
+ is_trait_available = trait_row is not None
74
+ validate_and_save_cohort_info(
75
+ is_final=False,
76
+ cohort=cohort,
77
+ info_path=json_path,
78
+ is_gene_available=is_gene_available,
79
+ is_trait_available=is_trait_available
80
+ )
81
+
82
+ # 4. Clinical Feature Extraction
83
+ if trait_row is not None:
84
+ clinical_features = geo_select_clinical_features(
85
+ clinical_df=clinical_data,
86
+ trait=trait,
87
+ trait_row=trait_row,
88
+ convert_trait=convert_trait,
89
+ age_row=age_row,
90
+ convert_age=convert_age,
91
+ gender_row=gender_row,
92
+ convert_gender=convert_gender
93
+ )
94
+
95
+ # Preview the clinical features
96
+ print("Preview of clinical features:")
97
+ print(preview_df(clinical_features))
98
+
99
+ # Save clinical features
100
+ clinical_features.to_csv(out_clinical_data_file)
101
+ # Get gene expression data from matrix file
102
+ genetic_data = get_genetic_data(matrix_file_path)
103
+
104
+ # Examine data structure
105
+ print("Data structure and head:")
106
+ print(genetic_data.head())
107
+
108
+ print("\nShape:", genetic_data.shape)
109
+
110
+ print("\nFirst 20 row IDs (gene/probe identifiers):")
111
+ print(list(genetic_data.index)[:20])
112
+
113
+ # Get a few column names to verify sample IDs
114
+ print("\nFirst 5 column names:")
115
+ print(list(genetic_data.columns)[:5])
116
+ # Review gene identifiers from gene expression data
117
+ # The identifiers appear to be Affymetrix probe IDs (e.g., '1007_s_at', '1053_at')
118
+ # rather than standard human gene symbols
119
+ # These need to be mapped to corresponding gene symbols for analysis
120
+ requires_gene_mapping = True
121
+ # Extract gene annotation data
122
+ gene_annotation = get_gene_annotation(soft_file_path)
123
+
124
+ # Display column names and preview data
125
+ print("Column names:")
126
+ print(gene_annotation.columns)
127
+
128
+ print("\nPreview of gene annotation data:")
129
+ print(preview_df(gene_annotation))
130
+ # Extract probe ID and gene symbol mapping
131
+ mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
132
+
133
+ # Apply mapping and aggregate probe measurements into gene expression values
134
+ gene_data = apply_gene_mapping(genetic_data, mapping_data)
135
+
136
+ # Print preview of the results
137
+ print("Gene data shape after mapping:", gene_data.shape)
138
+ print("\nFirst few rows:")
139
+ print(gene_data.head())
140
+ # Reload clinical data that was processed earlier
141
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
142
+
143
+ # 1. Normalize gene symbols
144
+ genetic_data = normalize_gene_symbols_in_index(gene_data)
145
+ genetic_data.to_csv(out_gene_data_file)
146
+
147
+ # 2. Link clinical and genetic data
148
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
149
+
150
+ # 3. Handle missing values systematically
151
+ linked_data = handle_missing_values(linked_data, trait)
152
+
153
+ # 4. Check for bias in trait and demographic features
154
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
155
+
156
+ # 5. Final validation and information saving
157
+ note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
158
+ is_usable = validate_and_save_cohort_info(
159
+ is_final=True,
160
+ cohort=cohort,
161
+ info_path=json_path,
162
+ is_gene_available=True,
163
+ is_trait_available=True,
164
+ is_biased=trait_biased,
165
+ df=linked_data,
166
+ note=note
167
+ )
168
+
169
+ # 6. Save linked data only if usable
170
+ if is_usable:
171
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
172
+ linked_data.to_csv(out_data_file)
p3/preprocess/Osteoarthritis/code/GSE93720.py ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Osteoarthritis"
6
+ cohort = "GSE93720"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Osteoarthritis"
10
+ in_cohort_dir = "../DATA/GEO/Osteoarthritis/GSE93720"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Osteoarthritis/GSE93720.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Osteoarthritis/gene_data/GSE93720.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Osteoarthritis/clinical_data/GSE93720.csv"
16
+ json_path = "./output/preprocess/3/Osteoarthritis/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+ print("Background Information:")
24
+ print(background_info)
25
+ print("\nSample Characteristics:")
26
+
27
+ # Get dictionary of unique values per row
28
+ unique_values_dict = get_unique_values_by_row(clinical_data)
29
+ for row, values in unique_values_dict.items():
30
+ print(f"\n{row}:")
31
+ print(values)
32
+ # 1. Gene Expression Data Availability
33
+ # The background info mentions GeneChip Human Genome U133 Plus 2.0 Array, so this contains gene expression data
34
+ is_gene_available = True
35
+
36
+ # 2. Variable Data Processing
37
+
38
+ # 2.1 Data Row Identification
39
+ # Trait (OA vs RA) is in row 0
40
+ trait_row = 0
41
+
42
+ # Age and gender are not available in the sample characteristics
43
+ age_row = None
44
+ gender_row = None
45
+
46
+ # 2.2 Data Type Conversion Functions
47
+ def convert_trait(value):
48
+ # Convert OA/RA to 1/0 after the colon
49
+ if not value:
50
+ return None
51
+ value = value.split(': ')[1].strip().upper()
52
+ if value == 'OA':
53
+ return 1
54
+ elif value == 'RA':
55
+ return 0
56
+ return None
57
+
58
+ def convert_age(value):
59
+ # Not needed since age is not available
60
+ return None
61
+
62
+ def convert_gender(value):
63
+ # Not needed since gender is not available
64
+ return None
65
+
66
+ # 3. Save Metadata
67
+ is_trait_available = trait_row is not None
68
+ _ = validate_and_save_cohort_info(
69
+ is_final=False,
70
+ cohort=cohort,
71
+ info_path=json_path,
72
+ is_gene_available=is_gene_available,
73
+ is_trait_available=is_trait_available
74
+ )
75
+
76
+ # 4. Clinical Feature Extraction
77
+ selected_clinical = geo_select_clinical_features(
78
+ clinical_data,
79
+ trait=trait,
80
+ trait_row=trait_row,
81
+ convert_trait=convert_trait,
82
+ age_row=age_row,
83
+ convert_age=convert_age,
84
+ gender_row=gender_row,
85
+ convert_gender=convert_gender
86
+ )
87
+
88
+ # Preview the processed clinical data
89
+ preview_df(selected_clinical)
90
+
91
+ # Save clinical data
92
+ selected_clinical.to_csv(out_clinical_data_file)
93
+ # Get gene expression data from matrix file
94
+ genetic_data = get_genetic_data(matrix_file_path)
95
+
96
+ # Examine data structure
97
+ print("Data structure and head:")
98
+ print(genetic_data.head())
99
+
100
+ print("\nShape:", genetic_data.shape)
101
+
102
+ print("\nFirst 20 row IDs (gene/probe identifiers):")
103
+ print(list(genetic_data.index)[:20])
104
+
105
+ # Get a few column names to verify sample IDs
106
+ print("\nFirst 5 column names:")
107
+ print(list(genetic_data.columns)[:5])
108
+ # Observe IDs like '1007_s_at' which are Affymetrix probe IDs, not gene symbols
109
+ # They need to be mapped to human gene symbols for biological interpretation
110
+ requires_gene_mapping = True
111
+ # Extract gene annotation data
112
+ gene_annotation = get_gene_annotation(soft_file_path)
113
+
114
+ # Display column names and preview data
115
+ print("Column names:")
116
+ print(gene_annotation.columns)
117
+
118
+ print("\nPreview of gene annotation data:")
119
+ print(preview_df(gene_annotation))
120
+ # 1. Observe identifiers and determine mapping columns
121
+ # Gene expression data uses probe IDs like '1007_s_at' which match the 'ID' column
122
+ # Gene symbols are in 'Gene Symbol' column
123
+ prob_col = 'ID'
124
+ gene_col = 'Gene Symbol'
125
+
126
+ # 2. Get gene mapping dataframe
127
+ mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)
128
+
129
+ # 3. Apply gene mapping to get gene-level expression
130
+ gene_data = apply_gene_mapping(genetic_data, mapping_df)
131
+
132
+ # Preview result
133
+ print("Gene expression data shape after mapping:", gene_data.shape)
134
+ print("\nPreview of mapped gene expression data:")
135
+ print(preview_df(gene_data))
136
+
137
+ # Save gene expression data
138
+ gene_data.to_csv(out_gene_data_file)
139
+ # Reload clinical data that was processed earlier
140
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
141
+
142
+ # 1. Normalize gene symbols
143
+ genetic_data = normalize_gene_symbols_in_index(gene_data)
144
+ genetic_data.to_csv(out_gene_data_file)
145
+
146
+ # 2. Link clinical and genetic data
147
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
148
+
149
+ # 3. Handle missing values systematically
150
+ linked_data = handle_missing_values(linked_data, trait)
151
+
152
+ # 4. Check for bias in trait and demographic features
153
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
154
+
155
+ # 5. Final validation and information saving
156
+ note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
157
+ is_usable = validate_and_save_cohort_info(
158
+ is_final=True,
159
+ cohort=cohort,
160
+ info_path=json_path,
161
+ is_gene_available=True,
162
+ is_trait_available=True,
163
+ is_biased=trait_biased,
164
+ df=linked_data,
165
+ note=note
166
+ )
167
+
168
+ # 6. Save linked data only if usable
169
+ if is_usable:
170
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
171
+ linked_data.to_csv(out_data_file)
p3/preprocess/Osteoarthritis/code/GSE98460.py ADDED
@@ -0,0 +1,265 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Osteoarthritis"
6
+ cohort = "GSE98460"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Osteoarthritis"
10
+ in_cohort_dir = "../DATA/GEO/Osteoarthritis/GSE98460"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Osteoarthritis/GSE98460.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Osteoarthritis/gene_data/GSE98460.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Osteoarthritis/clinical_data/GSE98460.csv"
16
+ json_path = "./output/preprocess/3/Osteoarthritis/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+ print("Background Information:")
24
+ print(background_info)
25
+ print("\nSample Characteristics:")
26
+
27
+ # Get dictionary of unique values per row
28
+ unique_values_dict = get_unique_values_by_row(clinical_data)
29
+ for row, values in unique_values_dict.items():
30
+ print(f"\n{row}:")
31
+ print(values)
32
+ # 1. Gene Expression Data Availability
33
+ is_gene_available = True # RNA microarray data indicated in background info
34
+
35
+ # 2. Variable Availability and Data Type
36
+ # Trait (OA) - can be inferred from diagnosis field
37
+ trait_row = 1
38
+ def convert_trait(x):
39
+ if not x or ':' not in x:
40
+ return None
41
+ value = x.split(':')[1].strip().lower()
42
+ if 'osteoarthritis' in value or 'oa' in value:
43
+ return 1
44
+ return 0
45
+
46
+ # Age - available in field 2
47
+ age_row = 2
48
+ def convert_age(x):
49
+ if not x or ':' not in x:
50
+ return None
51
+ try:
52
+ return float(x.split(':')[1].strip().split()[0])
53
+ except:
54
+ return None
55
+
56
+ # Gender - available in field 3
57
+ gender_row = 3
58
+ def convert_gender(x):
59
+ if not x or ':' not in x:
60
+ return None
61
+ value = x.split(':')[1].strip().lower()
62
+ if 'female' in value:
63
+ return 0
64
+ elif 'male' in value:
65
+ return 1
66
+ return None
67
+
68
+ # 3. Save metadata
69
+ is_trait_available = trait_row is not None
70
+ is_usable = validate_and_save_cohort_info(
71
+ is_final=False,
72
+ cohort=cohort,
73
+ info_path=json_path,
74
+ is_gene_available=is_gene_available,
75
+ is_trait_available=is_trait_available
76
+ )
77
+
78
+ # 4. Extract clinical features
79
+ if trait_row is not None:
80
+ selected_clinical = geo_select_clinical_features(
81
+ clinical_df=clinical_data,
82
+ trait=trait,
83
+ trait_row=trait_row,
84
+ convert_trait=convert_trait,
85
+ age_row=age_row,
86
+ convert_age=convert_age,
87
+ gender_row=gender_row,
88
+ convert_gender=convert_gender
89
+ )
90
+ print("Preview of selected clinical features:")
91
+ print(preview_df(selected_clinical))
92
+ selected_clinical.to_csv(out_clinical_data_file)
93
+ # Get gene expression data from matrix file
94
+ genetic_data = get_genetic_data(matrix_file_path)
95
+
96
+ # Examine data structure
97
+ print("Data structure and head:")
98
+ print(genetic_data.head())
99
+
100
+ print("\nShape:", genetic_data.shape)
101
+
102
+ print("\nFirst 20 row IDs (gene/probe identifiers):")
103
+ print(list(genetic_data.index)[:20])
104
+
105
+ # Get a few column names to verify sample IDs
106
+ print("\nFirst 5 column names:")
107
+ print(list(genetic_data.columns)[:5])
108
+ # Examining gene identifiers
109
+ # The IDs look like custom platform probe IDs (e.g. 16650001, 16650003)
110
+ # These are not standard human gene symbols (which would be like BRCA1, TP53, etc.)
111
+ # We will need to map these probe IDs to gene symbols
112
+
113
+ requires_gene_mapping = True
114
+ # Look at more content in SOFT file to find gene annotation section
115
+ with gzip.open(soft_file_path, 'rt') as f:
116
+ platform_found = False
117
+ table_start = False
118
+ first_row = None
119
+ gene_rows = []
120
+
121
+ for line in f:
122
+ if '!Platform_table_begin' in line:
123
+ table_start = True
124
+ continue
125
+ elif '!Platform_table_end' in line:
126
+ break
127
+ elif table_start:
128
+ if first_row is None:
129
+ first_row = line.strip()
130
+ else:
131
+ gene_rows.append(line.strip())
132
+
133
+ # Create dataframe from the platform table data
134
+ import io
135
+ header = first_row.split('\t')
136
+ gene_data = '\n'.join(gene_rows)
137
+ gene_annotation = pd.read_csv(io.StringIO(gene_data), sep='\t', names=header)
138
+
139
+ print("Column names:")
140
+ print(gene_annotation.columns)
141
+
142
+ print("\nPreview of gene annotation data:")
143
+ print(preview_df(gene_annotation))
144
+ # First examine more content in SOFT file to locate gene symbol information
145
+ with gzip.open(soft_file_path, 'rt') as f:
146
+ found_table = False
147
+ header = None
148
+ first_five_rows = []
149
+ for line in f:
150
+ if '!Platform_title' in line:
151
+ print("Platform title:", line.strip())
152
+ elif '!Platform_organism' in line:
153
+ print("Platform organism:", line.strip())
154
+ elif '!Platform_table_begin' in line:
155
+ found_table = True
156
+ continue
157
+ elif found_table:
158
+ if header is None:
159
+ header = line.strip()
160
+ print("\nPlatform table header:")
161
+ print(header)
162
+ elif len(first_five_rows) < 5:
163
+ first_five_rows.append(line.strip())
164
+ else:
165
+ break
166
+
167
+ print("\nFirst few rows:")
168
+ for row in first_five_rows:
169
+ print(row)
170
+
171
+ # Now try using tabs as delimiter to see full column structure
172
+ print("\nSplitting first row by tabs to check all fields:")
173
+ if first_five_rows:
174
+ print(first_five_rows[0].split('\t'))
175
+
176
+ # Based on examination results, extract complete platform data
177
+ platform_data = pd.read_csv(gzip.open(soft_file_path, 'rt'),
178
+ sep='\t',
179
+ skiprows=lambda x: x == 0 or not found_table,
180
+ comment='!')
181
+
182
+ print("\nFull column names found:")
183
+ print(platform_data.columns.tolist())
184
+
185
+ print("\nPreview of complete annotation data:")
186
+ print(preview_df(platform_data))
187
+ # Extract gene annotation using library function
188
+ gene_annotation = get_gene_annotation(soft_file_path)
189
+
190
+ # Print available columns to identify correct names
191
+ print("Available columns:", gene_annotation.columns.tolist())
192
+
193
+ # First examine the column names
194
+ probe_data = gene_annotation.head()
195
+ print("\nFirst few rows:")
196
+ print(preview_df(probe_data))
197
+
198
+ # Create mapping after seeing actual column names
199
+ mapping_df = get_gene_mapping(gene_annotation,
200
+ prob_col='ID',
201
+ gene_col='Gene Title')
202
+
203
+ # Convert probe-level measurements to gene expression data
204
+ gene_data = apply_gene_mapping(genetic_data, mapping_df)
205
+
206
+ print("\nPreview of gene expression data after mapping:")
207
+ print(preview_df(gene_data))
208
+ # Load clinical data
209
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
210
+
211
+ # Normalize gene symbols and save gene expression data
212
+ genetic_data = normalize_gene_symbols_in_index(genetic_data)
213
+ genetic_data.to_csv(out_gene_data_file)
214
+
215
+ # Link clinical and genetic data using library function
216
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
217
+
218
+ # Handle missing values systematically
219
+ linked_data = handle_missing_values(linked_data, trait)
220
+
221
+ # Check for bias in trait and demographic features
222
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
223
+
224
+ # Final validation and information saving
225
+ note = "This dataset contains cartilage tissue samples from OA patients, with gene expression data and demographic information."
226
+ is_usable = validate_and_save_cohort_info(
227
+ is_final=True,
228
+ cohort=cohort,
229
+ info_path=json_path,
230
+ is_gene_available=True,
231
+ is_trait_available=True,
232
+ is_biased=trait_biased,
233
+ df=linked_data,
234
+ note=note
235
+ )
236
+
237
+ # Save linked data only if usable
238
+ if is_usable:
239
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
240
+ linked_data.to_csv(out_data_file)
241
+ # First examine platform information in SOFT file
242
+ print("Examining platform information in SOFT file...")
243
+ with gzip.open(soft_file_path, 'rt') as f:
244
+ platform_lines = []
245
+ capture = False
246
+ for line in f:
247
+ if line.startswith(('!Platform_title', '!Platform_organism', '!Platform_technology')):
248
+ print(line.strip())
249
+ elif '!platform_table_begin' in line.lower():
250
+ capture = True
251
+ continue
252
+ elif '!platform_table_end' in line.lower():
253
+ break
254
+ elif capture:
255
+ platform_lines.append(line.strip())
256
+
257
+ # Now extract complete annotation with pandas
258
+ print("\nExtracting complete platform annotation...")
259
+ platform_df = pd.read_csv(io.StringIO('\n'.join(platform_lines)), sep='\t')
260
+
261
+ print("\nFound columns:")
262
+ print(platform_df.columns.tolist())
263
+
264
+ print("\nPreview of annotation data:")
265
+ print(preview_df(platform_df))
p3/preprocess/Osteoarthritis/code/TCGA.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Osteoarthritis"
6
+
7
+ # Input paths
8
+ tcga_root_dir = "../DATA/TCGA"
9
+
10
+ # Output paths
11
+ out_data_file = "./output/preprocess/3/Osteoarthritis/TCGA.csv"
12
+ out_gene_data_file = "./output/preprocess/3/Osteoarthritis/gene_data/TCGA.csv"
13
+ out_clinical_data_file = "./output/preprocess/3/Osteoarthritis/clinical_data/TCGA.csv"
14
+ json_path = "./output/preprocess/3/Osteoarthritis/cohort_info.json"
15
+
16
+ # 1. Check if suitable directory exists for Osteoarthritis
17
+ # No suitable directory found in TCGA dataset
18
+
19
+ # Mark data as unavailable since no relevant cohort exists
20
+ is_gene_available = False
21
+ is_trait_available = False
22
+
23
+ # Record this information
24
+ validate_and_save_cohort_info(
25
+ is_final=False,
26
+ cohort="TCGA",
27
+ info_path=json_path,
28
+ is_gene_available=is_gene_available,
29
+ is_trait_available=is_trait_available
30
+ )
p3/preprocess/Osteoarthritis/gene_data/GSE141934.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Osteoarthritis/gene_data/GSE55457.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Osteoarthritis/gene_data/GSE93698.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Osteoarthritis/gene_data/GSE98460.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ ID,GSM2596800,GSM2596801,GSM2596802,GSM2596803,GSM2596804,GSM2596805,GSM2596806,GSM2596807,GSM2596808,GSM2596809,GSM2596810,GSM2596811,GSM2596812,GSM2596813,GSM2596814,GSM2596815,GSM2596816,GSM2596817,GSM2596818,GSM2596819,GSM2596820,GSM2596821,GSM2596822,GSM2596823,GSM2596824,GSM2596825,GSM2596826,GSM2596827,GSM2596828,GSM2596829,GSM2596830,GSM2596831,GSM2596832,GSM2596833,GSM2596834,GSM2596835,GSM2596836,GSM2596837,GSM2596838,GSM2596839,GSM2596840,GSM2596841,GSM2596842,GSM2596843,GSM2596844,GSM2596845
p3/preprocess/Osteoporosis/GSE224330.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Osteoporosis/GSE51495.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Osteoporosis/GSE56815.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Osteoporosis/clinical_data/GSE152073.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM4602151,GSM4602152,GSM4602153,GSM4602154,GSM4602155,GSM4602156,GSM4602157,GSM4602158,GSM4602159,GSM4602160,GSM4602161,GSM4602162,GSM4602163,GSM4602164,GSM4602165,GSM4602166,GSM4602167,GSM4602168,GSM4602169,GSM4602170,GSM4602171,GSM4602172,GSM4602173,GSM4602174,GSM4602175,GSM4602176,GSM4602177,GSM4602178,GSM4602179,GSM4602180,GSM4602181,GSM4602182,GSM4602183,GSM4602184,GSM4602185,GSM4602186,GSM4602187,GSM4602188,GSM4602189,GSM4602190,GSM4602191,GSM4602192,GSM4602193,GSM4602194,GSM4602195,GSM4602196,GSM4602197,GSM4602198,GSM4602199,GSM4602200,GSM4602201,GSM4602202,GSM4602203,GSM4602204,GSM4602205,GSM4602206,GSM4602207,GSM4602208,GSM4602209,GSM4602210,GSM4602211,GSM4602212,GSM4602213,GSM4602214,GSM4602215,GSM4602216,GSM4602217,GSM4602218,GSM4602219,GSM4602220,GSM4602221,GSM4602222,GSM4602223,GSM4602224,GSM4602225,GSM4602226,GSM4602227,GSM4602228,GSM4602229,GSM4602230,GSM4602231,GSM4602232,GSM4602233,GSM4602234,GSM4602235,GSM4602236,GSM4602237,GSM4602238,GSM4602239,GSM4602240
2
+ Osteoporosis,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
3
+ Age,76.0,77.0,75.0,80.0,77.0,82.0,80.0,83.0,78.0,82.0,82.0,78.0,78.0,78.0,82.0,83.0,74.0,81.0,77.0,91.0,79.0,76.0,88.0,75.0,83.0,76.0,76.0,76.0,77.0,74.0,76.0,76.0,79.0,81.0,80.0,78.0,79.0,81.0,74.0,79.0,80.0,81.0,82.0,82.0,87.0,78.0,87.0,77.0,78.0,86.0,81.0,88.0,83.0,75.0,82.0,81.0,80.0,78.0,70.0,82.0,76.0,76.0,76.0,74.0,86.0,82.0,75.0,74.0,82.0,76.0,85.0,85.0,73.0,85.0,82.0,86.0,81.0,82.0,85.0,78.0,83.0,84.0,74.0,77.0,87.0,76.0,74.0,81.0,79.0,79.0
4
+ Gender,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
p3/preprocess/Osteoporosis/clinical_data/GSE20881.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ ,GSM522094,GSM522095,GSM522096,GSM522097,GSM522098,GSM522099,GSM522100,GSM522101,GSM522102,GSM522103,GSM522104,GSM522105,GSM522106,GSM522107,GSM522108,GSM522109,GSM522110,GSM522111,GSM522112,GSM522113,GSM522114,GSM522115,GSM522116,GSM522117,GSM522118,GSM522119,GSM522120,GSM522121,GSM522122,GSM522123,GSM522124,GSM522125,GSM522126,GSM522127,GSM522128,GSM522129,GSM522130,GSM522131,GSM522132,GSM522133,GSM522134,GSM522135,GSM522136,GSM522137,GSM522138,GSM522139,GSM522140,GSM522141,GSM522142,GSM522143,GSM522144,GSM522145,GSM522146,GSM522147,GSM522148,GSM522149,GSM522150,GSM522151,GSM522152,GSM522153,GSM522154,GSM522155,GSM522156,GSM522157,GSM522158,GSM522159,GSM522160,GSM522161,GSM522162,GSM522163,GSM522164,GSM522165,GSM522166,GSM522167,GSM522168,GSM522169,GSM522170,GSM522171,GSM522172,GSM522173,GSM522174,GSM522175,GSM522176,GSM522177,GSM522178,GSM522179,GSM522180,GSM522181,GSM522182,GSM522183,GSM522184,GSM522185,GSM522186,GSM522187,GSM522188,GSM522189,GSM522190,GSM522191,GSM522192,GSM522193,GSM522194,GSM522195,GSM522196,GSM522197,GSM522198,GSM522199,GSM522200,GSM522201,GSM522202,GSM522203,GSM522204,GSM522205,GSM522206,GSM522207,GSM522208,GSM522209,GSM522210,GSM522211,GSM522212,GSM522213,GSM522214,GSM522215,GSM522216,GSM522217,GSM522218,GSM522219,GSM522220,GSM522221,GSM522222,GSM522223,GSM522224,GSM522225,GSM522226,GSM522227,GSM522228,GSM522229,GSM522230,GSM522231,GSM522232,GSM522233,GSM522234,GSM522235,GSM522236,GSM522237,GSM522238,GSM522239,GSM522240,GSM522241,GSM522242,GSM522243,GSM522244,GSM522245,GSM522246,GSM522247,GSM522248,GSM522249,GSM522250,GSM522251,GSM522252,GSM522253,GSM522254,GSM522255,GSM522256,GSM522257,GSM522258,GSM522259,GSM522260,GSM522261,GSM522262,GSM522263,GSM522264,GSM522265
2
+ Osteoporosis,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
3
+ Age,-59.0,-58.0,-61.0,20.0,20.0,17.0,-29.0,32.0,,-53.0,-50.0,22.0,23.0,23.0,-32.0,-24.0,-52.0,-63.0,-59.0,32.0,-50.0,-59.0,-61.0,32.0,20.0,17.0,,-58.0,-53.0,-50.0,22.0,23.0,-32.0,-24.0,-52.0,-63.0,-61.0,32.0,20.0,,-53.0,-50.0,22.0,23.0,-32.0,-24.0,-63.0,34.0,-50.0,-50.0,-55.0,-55.0,-55.0,-57.0,-57.0,-57.0,27.0,27.0,27.0,26.0,26.0,17.0,-32.0,23.0,23.0,17.0,23.0,-46.0,-55.0,-55.0,-47.0,-47.0,-61.0,34.0,24.0,35.0,-53.0,-45.0,35.0,-53.0,-61.0,27.0,-58.0,26.0,-19.0,-58.0,-62.0,33.0,34.0,28.0,-55.0,-54.0,-38.0,-25.0,-58.0,22.0,15.0,27.0,-50.0,25.0,20.0,-60.0,-47.0,26.0,-54.0,28.0,35.0,-58.0,-38.0,-61.0,26.0,-45.0,35.0,-60.0,20.0,-55.0,-63.0,-47.0,-55.0,-50.0,-49.0,-47.0,-61.0,-58.0,26.0,-60.0,28.0,-54.0,-55.0,20.0,-61.0,27.0,26.0,-58.0,22.0,-53.0,-27.0,-54.0,-60.0,35.0,-58.0,-38.0,-62.0,25.0,26.0,-61.0,-57.0,32.0,-54.0,34.0,20.0,-53.0,-24.0,-58.0,33.0,-58.0,28.0,-60.0,-50.0,-60.0,-53.0,33.0,28.0,-54.0,27.0,-64.0,-54.0,-55.0,-63.0,15.0,-45.0,-62.0
p3/preprocess/Osteoporosis/clinical_data/GSE224330.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM7019507,GSM7019508,GSM7019509,GSM7019510,GSM7019511,GSM7019512,GSM7019513,GSM7019514,GSM7019515,GSM7019516,GSM7019517,GSM7019518,GSM7019519,GSM7019520,GSM7019521,GSM7019522,GSM7019523,GSM7019524,GSM7019525,GSM7019526,GSM7019527,GSM7019528,GSM7019529,GSM7019530,GSM7019531,GSM7019532,GSM7019533,GSM7019534,GSM7019535,GSM7019536,GSM7019537
2
+ Osteoporosis,0.0,0.0,0.0,0.0,1.0,,,,,,,,,,,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0
3
+ Age,63.0,64.0,63.0,48.0,70.0,62.0,58.0,57.0,60.0,57.0,52.0,51.0,53.0,56.0,62.0,54.0,61.0,54.0,55.0,65.0,84.0,70.0,76.0,62.0,73.0,71.0,59.0,62.0,47.0,76.0,54.0
4
+ Gender,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0
p3/preprocess/Osteoporosis/clinical_data/GSE35925.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM877494,GSM877495,GSM877496,GSM877497,GSM877498,GSM877499,GSM877500,GSM877501,GSM877502,GSM877503,GSM877504,GSM877505,GSM877506,GSM877507,GSM877508,GSM877509,GSM877510,GSM877511,GSM877512,GSM877513,GSM877514,GSM877515,GSM877516,GSM877517,GSM877518,GSM877519,GSM877520,GSM877521,GSM877522,GSM877523
2
+ Osteoporosis,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
3
+ Age,54.0,54.0,62.0,62.0,63.0,63.0,49.0,49.0,49.0,49.0,66.0,66.0,56.0,56.0,62.0,62.0,52.0,52.0,63.0,63.0,66.0,66.0,51.0,51.0,66.0,66.0,64.0,64.0,66.0,66.0
4
+ Gender,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
p3/preprocess/Osteoporosis/clinical_data/GSE51495.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM1246535,GSM1246536,GSM1246537,GSM1246538,GSM1246539,GSM1246540,GSM1246541,GSM1246542,GSM1246543,GSM1246544,GSM1246545,GSM1246546,GSM1246547,GSM1246548,GSM1246549,GSM1246550,GSM1246551,GSM1246552,GSM1246553,GSM1246554,GSM1246555,GSM1246556,GSM1246557,GSM1246558,GSM1246559,GSM1246560,GSM1246561,GSM1246562,GSM1246563,GSM1246564
2
+ Osteoporosis,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
3
+ Age,11.24,14.15,14.03,19.16,16.66,18.26,17.59,12.51,13.53,12.06,15.08,14.46,20.18,21.95,27.34,11.24,14.15,14.03,19.16,16.66,18.26,17.59,12.51,13.53,12.06,15.08,14.46,20.18,21.95,27.34
4
+ Gender,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
p3/preprocess/Osteoporosis/clinical_data/GSE56814.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM1369683,GSM1369684,GSM1369685,GSM1369686,GSM1369687,GSM1369688,GSM1369689,GSM1369690,GSM1369691,GSM1369692,GSM1369693,GSM1369694,GSM1369695,GSM1369696,GSM1369697,GSM1369698,GSM1369699,GSM1369700,GSM1369701,GSM1369702,GSM1369703,GSM1369704,GSM1369705,GSM1369706,GSM1369707,GSM1369708,GSM1369709,GSM1369710,GSM1369711,GSM1369712,GSM1369713,GSM1369714,GSM1369715,GSM1369716,GSM1369717,GSM1369718,GSM1369719,GSM1369720,GSM1369721,GSM1369722,GSM1369723,GSM1369724,GSM1369725,GSM1369726,GSM1369727,GSM1369728,GSM1369729,GSM1369730,GSM1369731,GSM1369732,GSM1369733,GSM1369734,GSM1369735,GSM1369736,GSM1369737,GSM1369738,GSM1369739,GSM1369740,GSM1369741,GSM1369742,GSM1369743,GSM1369744,GSM1369745,GSM1369746,GSM1369747,GSM1369748,GSM1369749,GSM1369750,GSM1369751,GSM1369752,GSM1369753,GSM1369754,GSM1369755
2
+ Osteoporosis,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0
p3/preprocess/Osteoporosis/clinical_data/GSE56815.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ ,GSM1369756,GSM1369757,GSM1369758,GSM1369759,GSM1369760,GSM1369761,GSM1369762,GSM1369763,GSM1369764,GSM1369765,GSM1369766,GSM1369767,GSM1369768,GSM1369769,GSM1369770,GSM1369771,GSM1369772,GSM1369773,GSM1369774,GSM1369775,GSM1369776,GSM1369777,GSM1369778,GSM1369779,GSM1369780,GSM1369781,GSM1369782,GSM1369783,GSM1369784,GSM1369785,GSM1369786,GSM1369787,GSM1369788,GSM1369789,GSM1369790,GSM1369791,GSM1369792,GSM1369793,GSM1369794,GSM1369795,GSM1369796,GSM1369797,GSM1369798,GSM1369799,GSM1369800,GSM1369801,GSM1369802,GSM1369803,GSM1369804,GSM1369805,GSM1369806,GSM1369807,GSM1369808,GSM1369809,GSM1369810,GSM1369811,GSM1369812,GSM1369813,GSM1369814,GSM1369815,GSM1369816,GSM1369817,GSM1369818,GSM1369819,GSM1369820,GSM1369821,GSM1369822,GSM1369823,GSM1369824,GSM1369825,GSM1369826,GSM1369827,GSM1369828,GSM1369829,GSM1369830,GSM1369831,GSM1369832,GSM1369833,GSM1369834,GSM1369835
2
+ Osteoporosis,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
3
+ Age,60.0,60.0,60.0,60.0,60.0,60.0,60.0,40.0,40.0,60.0,40.0,60.0,40.0,60.0,40.0,60.0,40.0,40.0,40.0,40.0,40.0,60.0,60.0,60.0,60.0,60.0,60.0,60.0,60.0,40.0,40.0,40.0,40.0,40.0,40.0,40.0,60.0,40.0,40.0,40.0,40.0,60.0,60.0,60.0,60.0,40.0,60.0,60.0,40.0,60.0,40.0,60.0,40.0,40.0,60.0,40.0,60.0,60.0,60.0,40.0,60.0,40.0,40.0,40.0,40.0,60.0,60.0,60.0,60.0,60.0,60.0,40.0,60.0,40.0,40.0,40.0,40.0,40.0,40.0,40.0
p3/preprocess/Osteoporosis/clinical_data/GSE84500.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM2238538,GSM2238539,GSM2238540,GSM2238541,GSM2238542,GSM2238543,GSM2238544,GSM2238545,GSM2238546,GSM2238547,GSM2238548,GSM2238549,GSM2238550,GSM2238551,GSM2238552,GSM2238553,GSM2238554,GSM2238555,GSM2238556,GSM2238557,GSM2238558,GSM2238559,GSM2238560,GSM2238561,GSM2238562,GSM2238563,GSM2238564,GSM2238565,GSM2238566,GSM2238567,GSM2238568,GSM2238569,GSM2238570,GSM2238571,GSM2238572,GSM2238573,GSM2238574,GSM2238575,GSM2238576,GSM2238577,GSM2238578,GSM2238579,GSM2238580,GSM2238581,GSM2238582,GSM2238583,GSM2238584,GSM2238585,GSM2238586,GSM2238587,GSM2238588,GSM2238589,GSM2238590,GSM2238591
2
+ Osteoporosis,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0
p3/preprocess/Osteoporosis/code/GSE152073.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Osteoporosis"
6
+ cohort = "GSE152073"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Osteoporosis"
10
+ in_cohort_dir = "../DATA/GEO/Osteoporosis/GSE152073"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Osteoporosis/GSE152073.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Osteoporosis/gene_data/GSE152073.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Osteoporosis/clinical_data/GSE152073.csv"
16
+ json_path = "./output/preprocess/3/Osteoporosis/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+ print("Background Information:")
24
+ print(background_info)
25
+ print("\nSample Characteristics:")
26
+
27
+ # Get dictionary of unique values per row
28
+ unique_values_dict = get_unique_values_by_row(clinical_data)
29
+ for row, values in unique_values_dict.items():
30
+ print(f"\n{row}:")
31
+ print(values)
32
+ # 1. Gene Expression Data
33
+ # Yes - Based on background info mentioning Affymetrix microarrays and gene expression data
34
+ is_gene_available = True
35
+
36
+ # 2. Variable Availability and Conversion Functions
37
+ # 2.1 Row Identifiers
38
+ trait_row = 0 # Inferred from background info stating all subjects have osteoporosis
39
+ age_row = 1 # Age data in row 1
40
+ gender_row = 0 # Gender data in row 0
41
+
42
+ # 2.2 Conversion Functions
43
+ def convert_trait(x):
44
+ # All subjects have osteoporosis based on study design
45
+ return 1
46
+
47
+ def convert_age(x):
48
+ try:
49
+ # Extract numeric age value after colon
50
+ age = int(x.split(': ')[1])
51
+ return age
52
+ except:
53
+ return None
54
+
55
+ def convert_gender(x):
56
+ try:
57
+ gender = x.split(': ')[1].lower()
58
+ if gender == 'female':
59
+ return 0
60
+ elif gender == 'male':
61
+ return 1
62
+ return None
63
+ except:
64
+ return None
65
+
66
+ # 3. Save Metadata
67
+ validate_and_save_cohort_info(
68
+ is_final=False,
69
+ cohort=cohort,
70
+ info_path=json_path,
71
+ is_gene_available=is_gene_available,
72
+ is_trait_available=trait_row is not None
73
+ )
74
+
75
+ # 4. Clinical Feature Extraction
76
+ if trait_row is not None:
77
+ clinical_features = geo_select_clinical_features(
78
+ clinical_df=clinical_data,
79
+ trait=trait,
80
+ trait_row=trait_row,
81
+ convert_trait=convert_trait,
82
+ age_row=age_row,
83
+ convert_age=convert_age,
84
+ gender_row=gender_row,
85
+ convert_gender=convert_gender
86
+ )
87
+
88
+ # Preview the extracted features
89
+ preview = preview_df(clinical_features)
90
+ print("Preview of clinical features:")
91
+ print(preview)
92
+
93
+ # Save to CSV
94
+ clinical_features.to_csv(out_clinical_data_file)
95
+ # Get gene expression data from matrix file
96
+ def get_genetic_data_modified(file_path: str, marker: str = "!series_matrix_table_begin") -> pd.DataFrame:
97
+ with gzip.open(file_path, 'rt') as file:
98
+ for i, line in enumerate(file):
99
+ if marker in line:
100
+ skip_rows = i + 1
101
+ break
102
+ else:
103
+ raise ValueError(f"Marker '{marker}' not found in the file.")
104
+
105
+ genetic_data = pd.read_csv(file_path, compression='gzip', skiprows=skip_rows, comment='!',
106
+ delimiter='\t', on_bad_lines='skip').T
107
+ genetic_data.columns = genetic_data.iloc[0] # Set first row as column names
108
+ genetic_data = genetic_data.iloc[1:] # Remove the first row
109
+
110
+ return genetic_data
111
+
112
+ genetic_data = get_genetic_data_modified(matrix_file_path)
113
+
114
+ # Print outputs to examine structure
115
+ print("Data structure and head:")
116
+ print(genetic_data.head())
117
+
118
+ print("\nShape:", genetic_data.shape)
119
+
120
+ print("\nFirst 20 column names (probe identifiers):")
121
+ print(list(genetic_data.columns)[:20])
122
+
123
+ print("\nFirst 5 row names (sample IDs):")
124
+ print(list(genetic_data.index)[:5])
125
+
126
+
127
+
p3/preprocess/Osteoporosis/code/GSE20881.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Osteoporosis"
6
+ cohort = "GSE20881"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Osteoporosis"
10
+ in_cohort_dir = "../DATA/GEO/Osteoporosis/GSE20881"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Osteoporosis/GSE20881.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Osteoporosis/gene_data/GSE20881.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Osteoporosis/clinical_data/GSE20881.csv"
16
+ json_path = "./output/preprocess/3/Osteoporosis/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+ print("Background Information:")
24
+ print(background_info)
25
+ print("\nSample Characteristics:")
26
+
27
+ # Get dictionary of unique values per row
28
+ unique_values_dict = get_unique_values_by_row(clinical_data)
29
+ for row, values in unique_values_dict.items():
30
+ print(f"\n{row}:")
31
+ print(values)
32
+ # 1. Gene Expression Data Availability
33
+ is_gene_available = True # Based on background info, this is a gene expression study of intestinal biopsies
34
+
35
+ # 2.1 Data Availability
36
+ trait_row = 58 # disease field with 'healthy' vs 'crohns disease'
37
+ age_row = 2 # birth date field
38
+ gender_row = None # No gender data
39
+
40
+ # 2.2 Data Type Conversion Functions
41
+ def convert_trait(value):
42
+ """Convert trait values to binary: 0 for healthy control, 1 for disease case"""
43
+ if not isinstance(value, str):
44
+ return None
45
+ value = value.split(': ')[-1].lower()
46
+ if 'healthy' in value:
47
+ return 0
48
+ elif 'crohns disease' in value:
49
+ return 1
50
+ return None
51
+
52
+ def convert_age(value):
53
+ """Convert birth date to age using procedure date as reference"""
54
+ from datetime import datetime
55
+ if not isinstance(value, str) or ': ' not in value:
56
+ return None
57
+ try:
58
+ birth_date = datetime.strptime(value.split(': ')[1], '%m/%d/%y')
59
+ # Use 2005 as reference year since procedures were in 2004-2005
60
+ ref_date = datetime(2005, 1, 1)
61
+ age = ref_date.year - birth_date.year
62
+ # Adjust age if birthday hasn't occurred yet
63
+ if ref_date.month < birth_date.month or (ref_date.month == birth_date.month and ref_date.day < birth_date.day):
64
+ age -= 1
65
+ return age
66
+ except:
67
+ return None
68
+
69
+ convert_gender = None # No gender data
70
+
71
+ # 3. Save Initial Metadata
72
+ validate_and_save_cohort_info(
73
+ is_final=False,
74
+ cohort=cohort,
75
+ info_path=json_path,
76
+ is_gene_available=is_gene_available,
77
+ is_trait_available=(trait_row is not None)
78
+ )
79
+
80
+ # 4. Clinical Feature Extraction
81
+ clinical_features = geo_select_clinical_features(
82
+ clinical_df=clinical_data,
83
+ trait=trait,
84
+ trait_row=trait_row,
85
+ convert_trait=convert_trait,
86
+ age_row=age_row,
87
+ convert_age=convert_age,
88
+ gender_row=gender_row,
89
+ convert_gender=convert_gender
90
+ )
91
+
92
+ # Preview and save clinical features
93
+ print(preview_df(clinical_features))
94
+ clinical_features.to_csv(out_clinical_data_file)
95
+ # Get gene expression data from matrix file
96
+ genetic_data = get_genetic_data(matrix_file_path)
97
+
98
+ # Examine data structure
99
+ print("Data structure and head:")
100
+ print(genetic_data.head())
101
+
102
+ print("\nShape:", genetic_data.shape)
103
+
104
+ print("\nFirst 20 row IDs (gene/probe identifiers):")
105
+ print(list(genetic_data.index)[:20])
106
+
107
+ # Get a few column names to verify sample IDs
108
+ print("\nFirst 5 column names:")
109
+ print(list(genetic_data.columns)[:5])
110
+ # The row IDs are just numbers (1, 2, 3, etc) and not recognizable gene symbols
111
+ # So they need to be mapped to proper human gene symbols
112
+ requires_gene_mapping = True
113
+ # Extract gene annotation data
114
+ gene_annotation = get_gene_annotation(soft_file_path)
115
+
116
+ # Display column names and preview data
117
+ print("Column names:")
118
+ print(gene_annotation.columns)
119
+
120
+ print("\nPreview of gene annotation data:")
121
+ print(preview_df(gene_annotation))
122
+ # 1. From the preview, we can see 'ID' column in gene annotation maps to row IDs in expression data,
123
+ # and 'GENE_SYMBOL' column contains the gene symbols
124
+
125
+ # 2. Create gene mapping dataframe
126
+ mapping_data = get_gene_mapping(gene_annotation, 'ID', 'GENE_SYMBOL')
127
+
128
+ # 3. Apply mapping to convert probe data to gene expression
129
+ gene_data = apply_gene_mapping(genetic_data, mapping_data)
130
+
131
+ # Print info about the mapping and conversion
132
+ print("\nShape after mapping to gene symbols:", gene_data.shape)
133
+ print("\nFirst few gene symbols:", list(gene_data.index)[:10])
134
+ # Reload clinical data that was processed earlier
135
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
136
+
137
+ # 1. Normalize gene symbols
138
+ genetic_data = normalize_gene_symbols_in_index(gene_data)
139
+ genetic_data.to_csv(out_gene_data_file)
140
+
141
+ # 2. Link clinical and genetic data
142
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
143
+
144
+ # 3. Handle missing values systematically
145
+ linked_data = handle_missing_values(linked_data, trait)
146
+
147
+ # 4. Check for bias in trait and demographic features
148
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
149
+
150
+ # 5. Final validation and information saving
151
+ note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
152
+ is_usable = validate_and_save_cohort_info(
153
+ is_final=True,
154
+ cohort=cohort,
155
+ info_path=json_path,
156
+ is_gene_available=True,
157
+ is_trait_available=True,
158
+ is_biased=trait_biased,
159
+ df=linked_data,
160
+ note=note
161
+ )
162
+
163
+ # 6. Save linked data only if usable
164
+ if is_usable:
165
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
166
+ linked_data.to_csv(out_data_file)
p3/preprocess/Osteoporosis/code/GSE224330.py ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Osteoporosis"
6
+ cohort = "GSE224330"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Osteoporosis"
10
+ in_cohort_dir = "../DATA/GEO/Osteoporosis/GSE224330"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Osteoporosis/GSE224330.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Osteoporosis/gene_data/GSE224330.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Osteoporosis/clinical_data/GSE224330.csv"
16
+ json_path = "./output/preprocess/3/Osteoporosis/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+ print("Background Information:")
24
+ print(background_info)
25
+ print("\nSample Characteristics:")
26
+
27
+ # Get dictionary of unique values per row
28
+ unique_values_dict = get_unique_values_by_row(clinical_data)
29
+ for row, values in unique_values_dict.items():
30
+ print(f"\n{row}:")
31
+ print(values)
32
+ # 1. Gene Expression Data Availability
33
+ # Based on background info mentioning "whole-genome transcriptomics" and "gene expression profiling"
34
+ is_gene_available = True
35
+
36
+ # 2.1 Data Availability
37
+ # For trait - look at comorbidity field which includes 'osteoporosis'
38
+ trait_row = 3
39
+
40
+ # For age - available in field 1
41
+ age_row = 1
42
+
43
+ # For gender - available in field 2
44
+ gender_row = 2
45
+
46
+ # 2.2 Data Type Conversion Functions
47
+ def convert_trait(value):
48
+ if pd.isna(value):
49
+ return None
50
+ value = value.split(': ')[1].strip().lower()
51
+ # Binary: 1 if has osteoporosis, 0 if not
52
+ if value == 'osteoporosis':
53
+ return 1
54
+ elif value in ['none', 'hypothyroidism', 'schizoaffective disorder', 'arthrosis']:
55
+ return 0
56
+ return None
57
+
58
+ def convert_age(value):
59
+ if pd.isna(value):
60
+ return None
61
+ # Extract numeric age value
62
+ try:
63
+ age = int(value.split(': ')[1].strip('y'))
64
+ return age
65
+ except:
66
+ return None
67
+
68
+ def convert_gender(value):
69
+ if pd.isna(value):
70
+ return None
71
+ value = value.split(': ')[1].strip().lower()
72
+ if value == 'female':
73
+ return 0
74
+ elif value == 'male':
75
+ return 1
76
+ return None
77
+
78
+ # 3. Save Metadata
79
+ is_trait_available = trait_row is not None
80
+ validate_and_save_cohort_info(
81
+ is_final=False,
82
+ cohort=cohort,
83
+ info_path=json_path,
84
+ is_gene_available=is_gene_available,
85
+ is_trait_available=is_trait_available
86
+ )
87
+
88
+ # 4. Extract Clinical Features
89
+ if trait_row is not None:
90
+ clinical_df = geo_select_clinical_features(
91
+ clinical_df=clinical_data,
92
+ trait=trait,
93
+ trait_row=trait_row,
94
+ convert_trait=convert_trait,
95
+ age_row=age_row,
96
+ convert_age=convert_age,
97
+ gender_row=gender_row,
98
+ convert_gender=convert_gender
99
+ )
100
+
101
+ # Preview the data
102
+ preview = preview_df(clinical_df)
103
+ print("Clinical data preview:")
104
+ print(preview)
105
+
106
+ # Save to CSV
107
+ clinical_df.to_csv(out_clinical_data_file)
108
+ # Get gene expression data from matrix file
109
+ genetic_data = get_genetic_data(matrix_file_path)
110
+
111
+ # Examine data structure
112
+ print("Data structure and head:")
113
+ print(genetic_data.head())
114
+
115
+ print("\nShape:", genetic_data.shape)
116
+
117
+ print("\nFirst 20 row IDs (gene/probe identifiers):")
118
+ print(list(genetic_data.index)[:20])
119
+
120
+ # Get a few column names to verify sample IDs
121
+ print("\nFirst 5 column names:")
122
+ print(list(genetic_data.columns)[:5])
123
+ # Looking at the gene identifiers (A_19_P...), these are Agilent microarray probe IDs, not human gene symbols
124
+ # They need to be mapped to official gene symbols for standardization and interpretation
125
+ requires_gene_mapping = True
126
+ # Extract gene annotation data
127
+ gene_annotation = get_gene_annotation(soft_file_path)
128
+
129
+ # Display column names and preview data
130
+ print("Column names:")
131
+ print(gene_annotation.columns)
132
+
133
+ print("\nPreview of gene annotation data:")
134
+ print(preview_df(gene_annotation))
135
+ # 1. Identify mapping columns
136
+ # From looking at the data:
137
+ # - Gene expression data uses identifiers like 'A_19_P00315452'
138
+ # - In gene annotation, 'ID' column has the same format
139
+ # - 'GENE_SYMBOL' column contains the target gene symbols
140
+
141
+ # 2. Get gene mapping dataframe
142
+ mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
143
+
144
+ # 3. Apply mapping to convert probe data to gene expression data
145
+ gene_data = apply_gene_mapping(genetic_data, mapping_df)
146
+
147
+ # Save gene data
148
+ gene_data.to_csv(out_gene_data_file)
149
+
150
+ # Preview results
151
+ print("\nShape of gene expression data after mapping:", gene_data.shape)
152
+ print("\nPreview of mapped gene data:")
153
+ print(preview_df(gene_data))
154
+ # Reload clinical data that was processed earlier
155
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
156
+
157
+ # 1. Normalize gene symbols
158
+ genetic_data = normalize_gene_symbols_in_index(gene_data)
159
+ genetic_data.to_csv(out_gene_data_file)
160
+
161
+ # 2. Link clinical and genetic data
162
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
163
+
164
+ # 3. Handle missing values systematically
165
+ linked_data = handle_missing_values(linked_data, trait)
166
+
167
+ # 4. Check for bias in trait and demographic features
168
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
169
+
170
+ # 5. Final validation and information saving
171
+ note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
172
+ is_usable = validate_and_save_cohort_info(
173
+ is_final=True,
174
+ cohort=cohort,
175
+ info_path=json_path,
176
+ is_gene_available=True,
177
+ is_trait_available=True,
178
+ is_biased=trait_biased,
179
+ df=linked_data,
180
+ note=note
181
+ )
182
+
183
+ # 6. Save linked data only if usable
184
+ if is_usable:
185
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
186
+ linked_data.to_csv(out_data_file)
p3/preprocess/Osteoporosis/code/GSE35925.py ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Osteoporosis"
6
+ cohort = "GSE35925"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Osteoporosis"
10
+ in_cohort_dir = "../DATA/GEO/Osteoporosis/GSE35925"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Osteoporosis/GSE35925.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Osteoporosis/gene_data/GSE35925.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Osteoporosis/clinical_data/GSE35925.csv"
16
+ json_path = "./output/preprocess/3/Osteoporosis/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+ print("Background Information:")
24
+ print(background_info)
25
+ print("\nSample Characteristics:")
26
+
27
+ # Get dictionary of unique values per row
28
+ unique_values_dict = get_unique_values_by_row(clinical_data)
29
+ for row, values in unique_values_dict.items():
30
+ print(f"\n{row}:")
31
+ print(values)
32
+ # 1. Gene Expression Data Availability
33
+ # Based on background info mentioning transcriptional analysis using U133 Plus 2.0 GeneChip
34
+ is_gene_available = True
35
+
36
+ # 2.1 Data Availability
37
+ # Can infer osteoporosis risk from gender (row 0) since these are post-menopausal women
38
+ # receiving osteoporosis prevention treatment
39
+ trait_row = 0
40
+ # Age data available in row 1
41
+ age_row = 1
42
+ # Gender data available in row 0
43
+ gender_row = 0
44
+
45
+ # 2.2 Data Type Conversion Functions
46
+ def convert_trait(x):
47
+ '''Convert to binary based on osteoporosis risk'''
48
+ if pd.isna(x) or ':' not in x:
49
+ return None
50
+ val = x.split(':', 1)[1].strip().lower()
51
+ # Post-menopausal females receiving preventive treatment are high risk
52
+ if 'female' in val:
53
+ return 1
54
+ return None
55
+
56
+ def convert_age(x):
57
+ '''Convert age to continuous value'''
58
+ if pd.isna(x) or ':' not in x:
59
+ return None
60
+ try:
61
+ return float(x.split(':', 1)[1].strip())
62
+ except:
63
+ return None
64
+
65
+ def convert_gender(x):
66
+ '''Convert gender to binary (0=female, 1=male)'''
67
+ if pd.isna(x) or ':' not in x:
68
+ return None
69
+ val = x.split(':', 1)[1].strip().lower()
70
+ if 'female' in val:
71
+ return 0
72
+ elif 'male' in val:
73
+ return 1
74
+ return None
75
+
76
+ # 3. Save metadata
77
+ is_trait_available = trait_row is not None
78
+ validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
79
+ is_gene_available=is_gene_available,
80
+ is_trait_available=is_trait_available)
81
+
82
+ # 4. Extract clinical features
83
+ if trait_row is not None:
84
+ selected_clinical_df = geo_select_clinical_features(
85
+ clinical_df=clinical_data,
86
+ trait=trait,
87
+ trait_row=trait_row,
88
+ convert_trait=convert_trait,
89
+ age_row=age_row,
90
+ convert_age=convert_age,
91
+ gender_row=gender_row,
92
+ convert_gender=convert_gender
93
+ )
94
+
95
+ # Preview the selected features
96
+ print("Preview of selected clinical features:")
97
+ print(preview_df(selected_clinical_df))
98
+
99
+ # Save to CSV
100
+ selected_clinical_df.to_csv(out_clinical_data_file)
101
+ # Get gene expression data from matrix file
102
+ genetic_data = get_genetic_data(matrix_file_path)
103
+
104
+ # Examine data structure
105
+ print("Data structure and head:")
106
+ print(genetic_data.head())
107
+
108
+ print("\nShape:", genetic_data.shape)
109
+
110
+ print("\nFirst 20 row IDs (gene/probe identifiers):")
111
+ print(list(genetic_data.index)[:20])
112
+
113
+ # Get a few column names to verify sample IDs
114
+ print("\nFirst 5 column names:")
115
+ print(list(genetic_data.columns)[:5])
116
+ # Based on inspection of gene identifiers like '1007_s_at', '1053_at', these are Affymetrix probe IDs
117
+ # They need to be mapped to human gene symbols for analysis
118
+ requires_gene_mapping = True
119
+ # Extract gene annotation data
120
+ gene_annotation = get_gene_annotation(soft_file_path)
121
+
122
+ # Display column names and preview data
123
+ print("Column names:")
124
+ print(gene_annotation.columns)
125
+
126
+ print("\nPreview of gene annotation data:")
127
+ print(preview_df(gene_annotation))
128
+ # 1. Based on inspection:
129
+ # The ID column contains the same probe IDs as in gene_expression data (e.g., '1007_s_at')
130
+ # The Gene Symbol column contains the gene symbols we want to map to
131
+
132
+ # 2. Extract mapping between probe IDs and gene symbols
133
+ gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
134
+
135
+ # 3. Apply mapping to convert probe-level data to gene-level data
136
+ gene_data = apply_gene_mapping(genetic_data, gene_mapping)
137
+
138
+ # Print info about the mapping result
139
+ print("\nShape of gene expression data after mapping:")
140
+ print(gene_data.shape)
141
+
142
+ print("\nPreview of gene expression data after mapping:")
143
+ print(preview_df(gene_data))
144
+ # Reload clinical data that was processed earlier
145
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
146
+
147
+ # 1. Normalize gene symbols
148
+ genetic_data = normalize_gene_symbols_in_index(gene_data)
149
+ genetic_data.to_csv(out_gene_data_file)
150
+
151
+ # 2. Link clinical and genetic data
152
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
153
+
154
+ # 3. Handle missing values systematically
155
+ linked_data = handle_missing_values(linked_data, trait)
156
+
157
+ # 4. Check for bias in trait and demographic features
158
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
159
+
160
+ # 5. Final validation and information saving
161
+ note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
162
+ is_usable = validate_and_save_cohort_info(
163
+ is_final=True,
164
+ cohort=cohort,
165
+ info_path=json_path,
166
+ is_gene_available=True,
167
+ is_trait_available=True,
168
+ is_biased=trait_biased,
169
+ df=linked_data,
170
+ note=note
171
+ )
172
+
173
+ # 6. Save linked data only if usable
174
+ if is_usable:
175
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
176
+ linked_data.to_csv(out_data_file)
p3/preprocess/Osteoporosis/code/GSE51495.py ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Osteoporosis"
6
+ cohort = "GSE51495"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Osteoporosis"
10
+ in_cohort_dir = "../DATA/GEO/Osteoporosis/GSE51495"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Osteoporosis/GSE51495.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Osteoporosis/gene_data/GSE51495.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Osteoporosis/clinical_data/GSE51495.csv"
16
+ json_path = "./output/preprocess/3/Osteoporosis/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+ print("Background Information:")
24
+ print(background_info)
25
+ print("\nSample Characteristics:")
26
+
27
+ # Get dictionary of unique values per row
28
+ unique_values_dict = get_unique_values_by_row(clinical_data)
29
+ for row, values in unique_values_dict.items():
30
+ print(f"\n{row}:")
31
+ print(values)
32
+ # 1. Gene Expression Data Availability
33
+ # Yes, this dataset likely contains gene expression data since it's about transcriptional profiling
34
+ is_gene_available = True
35
+
36
+ # 2. Variable Availability and Data Type Conversion
37
+ # 2.1 Data Availability
38
+ trait_row = 2 # Can infer trait status from tissue type
39
+ age_row = 1 # Age data available
40
+ gender_row = 0 # Gender data available
41
+
42
+ # 2.2 Data Type Conversion Functions
43
+ def convert_trait(value: str) -> int:
44
+ """Convert tissue type to binary trait status"""
45
+ if not isinstance(value, str):
46
+ return None
47
+ # Extract value after colon
48
+ if ':' in value:
49
+ value = value.split(':', 1)[1].strip().lower()
50
+ # Peripheral blood samples are controls, bone samples indicate cases
51
+ if 'peripheral blood' in value:
52
+ return 0
53
+ elif 'cortical bone' in value:
54
+ return 1
55
+ return None
56
+
57
+ def convert_age(value: str) -> float:
58
+ """Convert age string to float"""
59
+ if not isinstance(value, str):
60
+ return None
61
+ if ':' in value:
62
+ value = value.split(':', 1)[1].strip()
63
+ try:
64
+ # Extract numeric value, removing 'yrs'
65
+ age = float(value.replace('yrs', '').strip())
66
+ return age
67
+ except:
68
+ return None
69
+
70
+ def convert_gender(value: str) -> int:
71
+ """Convert gender string to binary (0=female, 1=male)"""
72
+ if not isinstance(value, str):
73
+ return None
74
+ if ':' in value:
75
+ value = value.split(':', 1)[1].strip().lower()
76
+ if value == 'female':
77
+ return 0
78
+ elif value == 'male':
79
+ return 1
80
+ return None
81
+
82
+ # 3. Save Metadata
83
+ is_trait_available = trait_row is not None
84
+ validate_and_save_cohort_info(is_final=False,
85
+ cohort=cohort,
86
+ info_path=json_path,
87
+ is_gene_available=is_gene_available,
88
+ is_trait_available=is_trait_available)
89
+
90
+ # 4. Clinical Feature Extraction
91
+ if trait_row is not None:
92
+ selected_clinical_df = geo_select_clinical_features(
93
+ clinical_df=clinical_data,
94
+ trait=trait,
95
+ trait_row=trait_row,
96
+ convert_trait=convert_trait,
97
+ age_row=age_row,
98
+ convert_age=convert_age,
99
+ gender_row=gender_row,
100
+ convert_gender=convert_gender
101
+ )
102
+
103
+ # Preview the extracted features
104
+ preview = preview_df(selected_clinical_df)
105
+ print("Preview of extracted clinical features:")
106
+ print(preview)
107
+
108
+ # Save to CSV
109
+ selected_clinical_df.to_csv(out_clinical_data_file)
110
+ # Get gene expression data from matrix file
111
+ genetic_data = get_genetic_data(matrix_file_path)
112
+
113
+ # Examine data structure
114
+ print("Data structure and head:")
115
+ print(genetic_data.head())
116
+
117
+ print("\nShape:", genetic_data.shape)
118
+
119
+ print("\nFirst 20 row IDs (gene/probe identifiers):")
120
+ print(list(genetic_data.index)[:20])
121
+
122
+ # Get a few column names to verify sample IDs
123
+ print("\nFirst 5 column names:")
124
+ print(list(genetic_data.columns)[:5])
125
+ # Observe format of gene identifiers - they start with "ILMN_" which indicates Illumina probes
126
+ # These are Illumina probe IDs, not human gene symbols
127
+ # Illumina probe IDs need to be mapped to human gene symbols
128
+ requires_gene_mapping = True
129
+ # Extract gene annotation data
130
+ gene_annotation = get_gene_annotation(soft_file_path)
131
+
132
+ # Display column names and preview data
133
+ print("Column names:")
134
+ print(gene_annotation.columns)
135
+
136
+ print("\nPreview of gene annotation data:")
137
+ print(preview_df(gene_annotation))
138
+ # Get gene mapping dataframe from annotation data
139
+ mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
140
+
141
+ # Apply gene mapping to convert probe data to gene expression data
142
+ gene_data = apply_gene_mapping(genetic_data, mapping_df)
143
+
144
+ # Preview result
145
+ print("Gene expression data shape after mapping:", gene_data.shape)
146
+ print("\nFirst few rows of gene expression data:")
147
+ print(gene_data.head())
148
+ # Reload clinical data that was processed earlier
149
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
150
+
151
+ # 1. Normalize gene symbols
152
+ genetic_data = normalize_gene_symbols_in_index(gene_data)
153
+ genetic_data.to_csv(out_gene_data_file)
154
+
155
+ # 2. Link clinical and genetic data
156
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
157
+
158
+ # 3. Handle missing values systematically
159
+ linked_data = handle_missing_values(linked_data, trait)
160
+
161
+ # 4. Check for bias in trait and demographic features
162
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
163
+
164
+ # 5. Final validation and information saving
165
+ note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
166
+ is_usable = validate_and_save_cohort_info(
167
+ is_final=True,
168
+ cohort=cohort,
169
+ info_path=json_path,
170
+ is_gene_available=True,
171
+ is_trait_available=True,
172
+ is_biased=trait_biased,
173
+ df=linked_data,
174
+ note=note
175
+ )
176
+
177
+ # 6. Save linked data only if usable
178
+ if is_usable:
179
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
180
+ linked_data.to_csv(out_data_file)
p3/preprocess/Osteoporosis/code/GSE56814.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Osteoporosis"
6
+ cohort = "GSE56814"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Osteoporosis"
10
+ in_cohort_dir = "../DATA/GEO/Osteoporosis/GSE56814"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Osteoporosis/GSE56814.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Osteoporosis/gene_data/GSE56814.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Osteoporosis/clinical_data/GSE56814.csv"
16
+ json_path = "./output/preprocess/3/Osteoporosis/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+ print("Background Information:")
24
+ print(background_info)
25
+ print("\nSample Characteristics:")
26
+
27
+ # Get dictionary of unique values per row
28
+ unique_values_dict = get_unique_values_by_row(clinical_data)
29
+ for row, values in unique_values_dict.items():
30
+ print(f"\n{row}:")
31
+ print(values)
32
+ # 1. Gene Expression Data Availability
33
+ # This dataset contains microarray gene expression data (Affymetrix 1.0 ST arrays)
34
+ is_gene_available = True
35
+
36
+ # 2.1 Data Availability
37
+ # For trait (BMD status): available in row 1, binary (high vs low BMD)
38
+ trait_row = 1
39
+
40
+ # For gender: all female based on row 0, so not useful for association study
41
+ gender_row = None
42
+
43
+ # For age: not directly available in sample characteristics
44
+ age_row = None
45
+
46
+ # 2.2 Data Type Conversion Functions
47
+ def convert_trait(value):
48
+ """Convert BMD status to binary: high BMD=1, low BMD=0"""
49
+ if isinstance(value, list):
50
+ value = value[0] # Take the first item if it's a list
51
+ if pd.isna(value):
52
+ return None
53
+ if ':' in str(value):
54
+ value = value.split(':')[1].strip()
55
+ if 'high bmd' in value.lower():
56
+ return 1
57
+ elif 'low bmd' in value.lower():
58
+ return 0
59
+ return None
60
+
61
+ # Age conversion not needed since age not available
62
+ convert_age = None
63
+
64
+ # Gender conversion not needed since gender not available
65
+ convert_gender = None
66
+
67
+ # 3. Save Metadata
68
+ is_trait_available = trait_row is not None
69
+ validate_and_save_cohort_info(
70
+ is_final=False,
71
+ cohort=cohort,
72
+ info_path=json_path,
73
+ is_gene_available=is_gene_available,
74
+ is_trait_available=is_trait_available
75
+ )
76
+
77
+ # 4. Clinical Feature Extraction
78
+ if trait_row is not None:
79
+ selected_clinical = geo_select_clinical_features(
80
+ clinical_df=clinical_data,
81
+ trait=trait,
82
+ trait_row=trait_row,
83
+ convert_trait=convert_trait,
84
+ age_row=age_row,
85
+ convert_age=convert_age,
86
+ gender_row=gender_row,
87
+ convert_gender=convert_gender
88
+ )
89
+
90
+ # Preview the extracted features
91
+ preview = preview_df(selected_clinical)
92
+ print("Preview of selected clinical features:")
93
+ print(preview)
94
+
95
+ # Save clinical data
96
+ selected_clinical.to_csv(out_clinical_data_file)
97
+ # Get gene expression data from matrix file
98
+ genetic_data = get_genetic_data(matrix_file_path)
99
+
100
+ # Examine data structure
101
+ print("Data structure and head:")
102
+ print(genetic_data.head())
103
+
104
+ print("\nShape:", genetic_data.shape)
105
+
106
+ print("\nFirst 20 row IDs (gene/probe identifiers):")
107
+ print(list(genetic_data.index)[:20])
108
+
109
+ # Get a few column names to verify sample IDs
110
+ print("\nFirst 5 column names:")
111
+ print(list(genetic_data.columns)[:5])
112
+ # The row IDs appear to be numeric identifiers (illumina probe IDs) rather than gene symbols
113
+ # These need to be mapped to standard human gene symbols for analysis
114
+ requires_gene_mapping = True
115
+ # Extract gene annotation data
116
+ gene_annotation = get_gene_annotation(soft_file_path)
117
+
118
+ # Display column names and preview data
119
+ print("Column names:")
120
+ print(gene_annotation.columns)
121
+
122
+ print("\nPreview of gene annotation data:")
123
+ print(preview_df(gene_annotation))
124
+ # Create gene mapping dataframe
125
+ mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')
126
+
127
+ # Apply gene mapping to convert probe data to gene expression data
128
+ gene_data = apply_gene_mapping(genetic_data, mapping_data)
129
+
130
+ # Preview result
131
+ print("Shape of gene data after mapping:", gene_data.shape)
132
+ print("\nFirst few genes and their expression values:")
133
+ print(gene_data.head())
134
+ # Reload clinical data that was processed earlier
135
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
136
+
137
+ # 1. Normalize gene symbols
138
+ genetic_data = normalize_gene_symbols_in_index(gene_data)
139
+ genetic_data.to_csv(out_gene_data_file)
140
+
141
+ # 2. Link clinical and genetic data
142
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
143
+
144
+ # 3. Handle missing values systematically
145
+ linked_data = handle_missing_values(linked_data, trait)
146
+
147
+ # 4. Check for bias in trait and demographic features
148
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
149
+
150
+ # 5. Final validation and information saving
151
+ note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
152
+ is_usable = validate_and_save_cohort_info(
153
+ is_final=True,
154
+ cohort=cohort,
155
+ info_path=json_path,
156
+ is_gene_available=True,
157
+ is_trait_available=True,
158
+ is_biased=trait_biased,
159
+ df=linked_data,
160
+ note=note
161
+ )
162
+
163
+ # 6. Save linked data only if usable
164
+ if is_usable:
165
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
166
+ linked_data.to_csv(out_data_file)
p3/preprocess/Osteoporosis/code/GSE56815.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Osteoporosis"
6
+ cohort = "GSE56815"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Osteoporosis"
10
+ in_cohort_dir = "../DATA/GEO/Osteoporosis/GSE56815"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Osteoporosis/GSE56815.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Osteoporosis/gene_data/GSE56815.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Osteoporosis/clinical_data/GSE56815.csv"
16
+ json_path = "./output/preprocess/3/Osteoporosis/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+ print("Background Information:")
24
+ print(background_info)
25
+ print("\nSample Characteristics:")
26
+
27
+ # Get dictionary of unique values per row
28
+ unique_values_dict = get_unique_values_by_row(clinical_data)
29
+ for row, values in unique_values_dict.items():
30
+ print(f"\n{row}:")
31
+ print(values)
32
+ # 1. Gene Expression Data Availability
33
+ # The series uses Affymetrix HG-133A arrays for gene expression profiling
34
+ is_gene_available = True
35
+
36
+ # 2.1 Data Availability
37
+ # trait (BMD) is in row 1, with "high BMD" and "low BMD" values
38
+ trait_row = 1
39
+
40
+ # age is not directly available but can be inferred from menopausal state in row 2
41
+ age_row = 2
42
+
43
+ # gender is in row 0 but shows only "Female", so not useful for association study
44
+ gender_row = None
45
+
46
+ # 2.2 Data Type Conversion Functions
47
+ def convert_trait(value):
48
+ if pd.isna(value):
49
+ return None
50
+ value = value.split(": ")[-1].lower()
51
+ if "high bmd" in value:
52
+ return 0 # Control group
53
+ elif "low bmd" in value:
54
+ return 1 # Case group
55
+ return None
56
+
57
+ def convert_age(value):
58
+ if pd.isna(value):
59
+ return None
60
+ value = value.split(": ")[-1].lower()
61
+ # Convert menopausal state to approximate age
62
+ if "premenopausal" in value:
63
+ return 40 # Typical premenopausal age
64
+ elif "postmenopausal" in value:
65
+ return 60 # Typical postmenopausal age
66
+ return None
67
+
68
+ def convert_gender(value):
69
+ # Not used since gender is constant
70
+ pass
71
+
72
+ # 3. Save Metadata
73
+ validate_and_save_cohort_info(is_final=False,
74
+ cohort=cohort,
75
+ info_path=json_path,
76
+ is_gene_available=is_gene_available,
77
+ is_trait_available=trait_row is not None)
78
+
79
+ # 4. Clinical Feature Extraction
80
+ if trait_row is not None:
81
+ clinical_features = geo_select_clinical_features(
82
+ clinical_df=clinical_data,
83
+ trait=trait,
84
+ trait_row=trait_row,
85
+ convert_trait=convert_trait,
86
+ age_row=age_row,
87
+ convert_age=convert_age,
88
+ gender_row=gender_row,
89
+ convert_gender=convert_gender
90
+ )
91
+
92
+ # Preview the extracted features
93
+ preview = preview_df(clinical_features)
94
+ print("Preview of clinical features:")
95
+ print(preview)
96
+
97
+ # Save to CSV
98
+ clinical_features.to_csv(out_clinical_data_file)
99
+ # Get gene expression data from matrix file
100
+ genetic_data = get_genetic_data(matrix_file_path)
101
+
102
+ # Examine data structure
103
+ print("Data structure and head:")
104
+ print(genetic_data.head())
105
+
106
+ print("\nShape:", genetic_data.shape)
107
+
108
+ print("\nFirst 20 row IDs (gene/probe identifiers):")
109
+ print(list(genetic_data.index)[:20])
110
+
111
+ # Get a few column names to verify sample IDs
112
+ print("\nFirst 5 column names:")
113
+ print(list(genetic_data.columns)[:5])
114
+ # The gene identifiers are in format like "1007_s_at" which are Affymetrix probe IDs
115
+ # These need to be mapped to official gene symbols for analysis
116
+ requires_gene_mapping = True
117
+ # Extract gene annotation data
118
+ gene_annotation = get_gene_annotation(soft_file_path)
119
+
120
+ # Display column names and preview data
121
+ print("Column names:")
122
+ print(gene_annotation.columns)
123
+
124
+ print("\nPreview of gene annotation data:")
125
+ print(preview_df(gene_annotation))
126
+ # Get gene mapping dataframe with ID and Gene Symbol columns
127
+ mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
128
+
129
+ # Apply gene mapping to convert probe data to gene expression data
130
+ gene_data = apply_gene_mapping(genetic_data, mapping_df)
131
+
132
+ # Save gene data to CSV
133
+ gene_data.to_csv(out_gene_data_file)
134
+ # Reload clinical data that was processed earlier
135
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
136
+
137
+ # 1. Normalize gene symbols
138
+ genetic_data = normalize_gene_symbols_in_index(gene_data)
139
+ genetic_data.to_csv(out_gene_data_file)
140
+
141
+ # 2. Link clinical and genetic data
142
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
143
+
144
+ # 3. Handle missing values systematically
145
+ linked_data = handle_missing_values(linked_data, trait)
146
+
147
+ # 4. Check for bias in trait and demographic features
148
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
149
+
150
+ # 5. Final validation and information saving
151
+ note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
152
+ is_usable = validate_and_save_cohort_info(
153
+ is_final=True,
154
+ cohort=cohort,
155
+ info_path=json_path,
156
+ is_gene_available=True,
157
+ is_trait_available=True,
158
+ is_biased=trait_biased,
159
+ df=linked_data,
160
+ note=note
161
+ )
162
+
163
+ # 6. Save linked data only if usable
164
+ if is_usable:
165
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
166
+ linked_data.to_csv(out_data_file)
p3/preprocess/Osteoporosis/code/GSE62589.py ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Osteoporosis"
6
+ cohort = "GSE62589"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Osteoporosis"
10
+ in_cohort_dir = "../DATA/GEO/Osteoporosis/GSE62589"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Osteoporosis/GSE62589.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Osteoporosis/gene_data/GSE62589.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Osteoporosis/clinical_data/GSE62589.csv"
16
+ json_path = "./output/preprocess/3/Osteoporosis/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+ print("Background Information:")
24
+ print(background_info)
25
+ print("\nSample Characteristics:")
26
+
27
+ # Get dictionary of unique values per row
28
+ unique_values_dict = get_unique_values_by_row(clinical_data)
29
+ for row, values in unique_values_dict.items():
30
+ print(f"\n{row}:")
31
+ print(values)
32
+ # Gene expression data availability check
33
+ # This is a SuperSeries and we don't have clear information about data type
34
+ is_gene_available = False
35
+
36
+ # Variable availability check
37
+ # Trait row: Not directly available in characteristics, can't be inferred
38
+ trait_row = None
39
+
40
+ # Age row: Not available in characteristics
41
+ age_row = None
42
+
43
+ # Gender row: Available in row 2, but all female so not useful
44
+ gender_row = None
45
+
46
+ # Type conversion functions
47
+ def convert_trait(x):
48
+ """Convert trait status to binary"""
49
+ if x is None:
50
+ return None
51
+ x = str(x).lower()
52
+ if ':' in x:
53
+ x = x.split(':')[1].strip()
54
+ if 'osteoporosis' in x:
55
+ return 1
56
+ elif 'control' in x or 'normal' in x:
57
+ return 0
58
+ return None
59
+
60
+ def convert_age(x):
61
+ """Convert age to float"""
62
+ if x is None:
63
+ return None
64
+ try:
65
+ if ':' in x:
66
+ x = x.split(':')[1].strip()
67
+ return float(x)
68
+ except:
69
+ return None
70
+
71
+ def convert_gender(x):
72
+ """Convert gender to binary"""
73
+ if x is None:
74
+ return None
75
+ x = str(x).lower()
76
+ if ':' in x:
77
+ x = x.split(':')[1].strip()
78
+ if 'female' in x:
79
+ return 0
80
+ elif 'male' in x:
81
+ return 1
82
+ return None
83
+
84
+ # Save metadata
85
+ is_trait_available = trait_row is not None
86
+ validate_and_save_cohort_info(is_final=False,
87
+ cohort=cohort,
88
+ info_path=json_path,
89
+ is_gene_available=is_gene_available,
90
+ is_trait_available=is_trait_available)
91
+ # Get gene expression data from matrix file
92
+ genetic_data = get_genetic_data(matrix_file_path)
93
+
94
+ # Examine data structure
95
+ print("Data structure and head:")
96
+ print(genetic_data.head())
97
+
98
+ print("\nShape:", genetic_data.shape)
99
+
100
+ print("\nFirst 20 row IDs (gene/probe identifiers):")
101
+ print(list(genetic_data.index)[:20])
102
+
103
+ # Get a few column names to verify sample IDs
104
+ print("\nFirst 5 column names:")
105
+ print(list(genetic_data.columns)[:5])
106
+ # The row IDs appear to be probe IDs (numeric identifiers) rather than human gene symbols
107
+ # These will need to be mapped to standard gene symbols for analysis
108
+ requires_gene_mapping = True
109
+ # Extract gene annotation data
110
+ gene_annotation = get_gene_annotation(soft_file_path)
111
+
112
+ # Display column names and preview data
113
+ print("Column names:")
114
+ print(gene_annotation.columns)
115
+
116
+ print("\nPreview of gene annotation data:")
117
+ print(preview_df(gene_annotation))
118
+ # From examining previous outputs, we see:
119
+ # - Gene expression data uses numeric IDs in the 'ID' column
120
+ # - Gene annotation has 'ID' column with matching IDs and 'gene_assignment' with gene symbols
121
+
122
+ # Get gene mapping between probe IDs and gene symbols
123
+ gene_mapping = get_gene_mapping(gene_annotation, 'ID', 'gene_assignment')
124
+
125
+ # Apply mapping to convert probe-level data to gene-level expression
126
+ gene_data = apply_gene_mapping(genetic_data, gene_mapping)
127
+
128
+ # Preview results
129
+ print("\nShape of gene expression data after mapping:", gene_data.shape)
130
+ print("\nFirst few rows of mapped gene expression data:")
131
+ print(gene_data.head())
132
+ # Create minimal dummy DataFrame
133
+ dummy_df = pd.DataFrame({trait: [0]}) # One row with trait value
134
+ is_biased = True # Mark as biased/unusable
135
+
136
+ note = "This is a SuperSeries without clear data type information. No clinical trait data available."
137
+ is_usable = validate_and_save_cohort_info(
138
+ is_final=True,
139
+ cohort=cohort,
140
+ info_path=json_path,
141
+ is_gene_available=False,
142
+ is_trait_available=False,
143
+ is_biased=is_biased,
144
+ df=dummy_df,
145
+ note=note
146
+ )
p3/preprocess/Osteoporosis/code/GSE80614.py ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Osteoporosis"
6
+ cohort = "GSE80614"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Osteoporosis"
10
+ in_cohort_dir = "../DATA/GEO/Osteoporosis/GSE80614"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Osteoporosis/GSE80614.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Osteoporosis/gene_data/GSE80614.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Osteoporosis/clinical_data/GSE80614.csv"
16
+ json_path = "./output/preprocess/3/Osteoporosis/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+ print("Background Information:")
24
+ print(background_info)
25
+ print("\nSample Characteristics:")
26
+
27
+ # Get dictionary of unique values per row
28
+ unique_values_dict = get_unique_values_by_row(clinical_data)
29
+ for row, values in unique_values_dict.items():
30
+ print(f"\n{row}:")
31
+ print(values)
32
+ # 1. Gene Expression Data Availability
33
+ # The background info mentions "microarray expression profiling" indicating gene expression data
34
+ is_gene_available = True
35
+
36
+ # 2.1 Data Availability
37
+ # Trait data not directly available since this is a control/case study comparing
38
+ # osteogenic vs adipogenic differentiation, not diseased vs healthy samples
39
+ trait_row = None
40
+
41
+ # Age data available in key 1
42
+ age_row = 1
43
+
44
+ # Gender data available in key 0
45
+ gender_row = 0
46
+
47
+ # 2.2 Data Type Conversion Functions
48
+ def convert_trait(x):
49
+ # Not needed since trait data not available
50
+ return None
51
+
52
+ def convert_age(x):
53
+ # Extract number from string like "age: 19 years" or "age: 19"
54
+ try:
55
+ return float(x.split(': ')[1].split(' ')[0])
56
+ except:
57
+ return None
58
+
59
+ def convert_gender(x):
60
+ # Convert gender to binary (female=0, male=1)
61
+ try:
62
+ gender = x.split(': ')[1].lower()
63
+ if gender == 'male':
64
+ return 1
65
+ elif gender == 'female':
66
+ return 0
67
+ return None
68
+ except:
69
+ return None
70
+
71
+ # 3. Save metadata
72
+ validate_and_save_cohort_info(is_final=False,
73
+ cohort=cohort,
74
+ info_path=json_path,
75
+ is_gene_available=is_gene_available,
76
+ is_trait_available=(trait_row is not None))
77
+
78
+ # 4. Skip clinical feature extraction since trait_row is None
79
+ # Get gene expression data from matrix file
80
+ genetic_data = get_genetic_data(matrix_file_path)
81
+
82
+ # Examine data structure
83
+ print("Data structure and head:")
84
+ print(genetic_data.head())
85
+
86
+ print("\nShape:", genetic_data.shape)
87
+
88
+ print("\nFirst 20 row IDs (gene/probe identifiers):")
89
+ print(list(genetic_data.index)[:20])
90
+
91
+ # Get a few column names to verify sample IDs
92
+ print("\nFirst 5 column names:")
93
+ print(list(genetic_data.columns)[:5])
94
+ # The gene identifiers start with "ILMN_" indicating these are Illumina probe IDs, not standard gene symbols
95
+ requires_gene_mapping = True
96
+ # Extract gene annotation data
97
+ gene_annotation = get_gene_annotation(soft_file_path)
98
+
99
+ # Display column names and preview data
100
+ print("Column names:")
101
+ print(gene_annotation.columns)
102
+
103
+ print("\nPreview of gene annotation data:")
104
+ print(preview_df(gene_annotation))
105
+ # 1. Identify the relevant columns for mapping
106
+ # 'ID' in gene annotation matches the probe IDs (ILMN_*) from gene expression data
107
+ # 'Symbol' contains the corresponding gene symbols
108
+ prob_col = 'ID'
109
+ gene_col = 'Symbol'
110
+
111
+ # 2. Get gene mapping dataframe
112
+ mapping_data = get_gene_mapping(gene_annotation, prob_col, gene_col)
113
+
114
+ # 3. Convert probe-level measurements to gene expression data
115
+ gene_data = apply_gene_mapping(genetic_data, mapping_data)
116
+
117
+ # Preview the results
118
+ print("Shape of gene expression data after mapping:", gene_data.shape)
119
+ print("\nFirst few rows of mapped gene data:")
120
+ print(gene_data.head())
121
+ # 1. Normalize gene symbols
122
+ genetic_data = normalize_gene_symbols_in_index(gene_data)
123
+ genetic_data.to_csv(out_gene_data_file)
124
+
125
+ note = "Gene expression data available but no clinical variables for association studies"
126
+ is_usable = validate_and_save_cohort_info(
127
+ is_final=True,
128
+ cohort=cohort,
129
+ info_path=json_path,
130
+ is_gene_available=True,
131
+ is_trait_available=False,
132
+ is_biased=True, # Set to True since no clinical data makes it unusable
133
+ df=genetic_data, # Pass the gene expression data
134
+ note=note
135
+ )
p3/preprocess/Osteoporosis/code/GSE84500.py ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Osteoporosis"
6
+ cohort = "GSE84500"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Osteoporosis"
10
+ in_cohort_dir = "../DATA/GEO/Osteoporosis/GSE84500"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Osteoporosis/GSE84500.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Osteoporosis/gene_data/GSE84500.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Osteoporosis/clinical_data/GSE84500.csv"
16
+ json_path = "./output/preprocess/3/Osteoporosis/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
23
+ print("Background Information:")
24
+ print(background_info)
25
+ print("\nSample Characteristics:")
26
+
27
+ # Get dictionary of unique values per row
28
+ unique_values_dict = get_unique_values_by_row(clinical_data)
29
+ for row, values in unique_values_dict.items():
30
+ print(f"\n{row}:")
31
+ print(values)
32
+ # 1. Gene Expression Data Availability
33
+ # Yes, this is gene expression microarray data studying differentiation and gene regulation
34
+ is_gene_available = True
35
+
36
+ # 2. Variable Availability and Data Type Conversion
37
+ # Osteoporosis trait can be inferred from treatment condition in row 2
38
+ # BMP2+TGFB+IBMX treatment promotes osteogenic differentiation while others don't
39
+ def convert_trait(value: str) -> int:
40
+ if not value or ':' not in value:
41
+ return None
42
+ treatment = value.split(': ')[1].strip().lower()
43
+ # Treatment with BMP2+TGFB+IBMX promotes osteogenic differentiation
44
+ return 1 if treatment == 'bmp2+tgfb+ibmx' else 0
45
+
46
+ trait_row = 2
47
+
48
+ # Age and gender not available - these are cell line samples
49
+ age_row = None
50
+ gender_row = None
51
+ convert_age = None
52
+ convert_gender = None
53
+
54
+ # 3. Save metadata
55
+ validate_and_save_cohort_info(
56
+ is_final=False,
57
+ cohort=cohort,
58
+ info_path=json_path,
59
+ is_gene_available=is_gene_available,
60
+ is_trait_available=(trait_row is not None)
61
+ )
62
+
63
+ # 4. Clinical Feature Extraction
64
+ # Since trait_row is not None, we extract clinical features
65
+ clinical_features = geo_select_clinical_features(
66
+ clinical_df=clinical_data,
67
+ trait=trait,
68
+ trait_row=trait_row,
69
+ convert_trait=convert_trait,
70
+ age_row=age_row,
71
+ convert_age=convert_age,
72
+ gender_row=gender_row,
73
+ convert_gender=convert_gender
74
+ )
75
+
76
+ # Preview the processed clinical data
77
+ print(preview_df(clinical_features))
78
+
79
+ # Save clinical data
80
+ clinical_features.to_csv(out_clinical_data_file)
81
+ # Get gene expression data from matrix file
82
+ genetic_data = get_genetic_data(matrix_file_path)
83
+
84
+ # Examine data structure
85
+ print("Data structure and head:")
86
+ print(genetic_data.head())
87
+
88
+ print("\nShape:", genetic_data.shape)
89
+
90
+ print("\nFirst 20 row IDs (gene/probe identifiers):")
91
+ print(list(genetic_data.index)[:20])
92
+
93
+ # Get a few column names to verify sample IDs
94
+ print("\nFirst 5 column names:")
95
+ print(list(genetic_data.columns)[:5])
96
+ # Based on the format of gene IDs like '1007_s_at', these appear to be Affymetrix probe IDs
97
+ # rather than human gene symbols, which would look like 'BRCA1', 'TP53', etc.
98
+ # Therefore, these IDs need to be mapped to gene symbols
99
+ requires_gene_mapping = True
100
+ # Extract gene annotation data
101
+ gene_annotation = get_gene_annotation(soft_file_path)
102
+
103
+ # Display column names and preview data
104
+ print("Column names:")
105
+ print(gene_annotation.columns)
106
+
107
+ print("\nPreview of gene annotation data:")
108
+ print(preview_df(gene_annotation))
109
+ # 1. Identify mapping columns from gene annotation data
110
+ # Gene identifiers are in 'ID' column as probe IDs (e.g., '1007_s_at')
111
+ # Gene symbols are in 'Gene Symbol' column (e.g., 'DDR1')
112
+
113
+ # 2. Extract mapping dataframe
114
+ mapping_data = get_gene_mapping(gene_annotation, 'ID', 'Gene Symbol')
115
+
116
+ # 3. Convert probe data to gene expression data
117
+ gene_data = apply_gene_mapping(genetic_data, mapping_data)
118
+
119
+ # Print dimensions to verify the mapping
120
+ print("\nDimensions:")
121
+ print(f"Original probe data: {genetic_data.shape}")
122
+ print(f"After mapping to genes: {gene_data.shape}")
123
+
124
+ # Preview first few rows
125
+ print("\nFirst few rows of mapped gene data:")
126
+ print(gene_data.head())
127
+ # Reload clinical data that was processed earlier
128
+ selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
129
+
130
+ # 1. Normalize gene symbols
131
+ genetic_data = normalize_gene_symbols_in_index(gene_data)
132
+ genetic_data.to_csv(out_gene_data_file)
133
+
134
+ # 2. Link clinical and genetic data
135
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
136
+
137
+ # 3. Handle missing values systematically
138
+ linked_data = handle_missing_values(linked_data, trait)
139
+
140
+ # 4. Check for bias in trait and demographic features
141
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
142
+
143
+ # 5. Final validation and information saving
144
+ note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
145
+ is_usable = validate_and_save_cohort_info(
146
+ is_final=True,
147
+ cohort=cohort,
148
+ info_path=json_path,
149
+ is_gene_available=True,
150
+ is_trait_available=True,
151
+ is_biased=trait_biased,
152
+ df=linked_data,
153
+ note=note
154
+ )
155
+
156
+ # 6. Save linked data only if usable
157
+ if is_usable:
158
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
159
+ linked_data.to_csv(out_data_file)
p3/preprocess/Osteoporosis/code/TCGA.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Osteoporosis"
6
+
7
+ # Input paths
8
+ tcga_root_dir = "../DATA/TCGA"
9
+
10
+ # Output paths
11
+ out_data_file = "./output/preprocess/3/Osteoporosis/TCGA.csv"
12
+ out_gene_data_file = "./output/preprocess/3/Osteoporosis/gene_data/TCGA.csv"
13
+ out_clinical_data_file = "./output/preprocess/3/Osteoporosis/clinical_data/TCGA.csv"
14
+ json_path = "./output/preprocess/3/Osteoporosis/cohort_info.json"
15
+
16
+ # 1. Check if suitable directory exists for Osteoporosis
17
+ # No suitable directory found in TCGA dataset since TCGA is a cancer database
18
+ # and osteoporosis is not a cancer condition
19
+
20
+ # Mark data as unavailable since no relevant cohort exists
21
+ is_gene_available = False
22
+ is_trait_available = False
23
+
24
+ # Record this information
25
+ validate_and_save_cohort_info(
26
+ is_final=False,
27
+ cohort="TCGA",
28
+ info_path=json_path,
29
+ is_gene_available=is_gene_available,
30
+ is_trait_available=is_trait_available
31
+ )
p3/preprocess/Osteoporosis/cohort_info.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"GSE84500": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 54, "note": "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"}, "GSE80614": {"is_usable": false, "is_gene_available": true, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Gene expression data available but no clinical variables for association studies"}, "GSE62589": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "This is a SuperSeries without clear data type information. No clinical trait data available."}, "GSE56815": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": true, "has_gender": false, "sample_size": 80, "note": "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"}, "GSE56814": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 73, "note": "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"}, "GSE51495": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": true, "has_gender": false, "sample_size": 30, "note": "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"}, "GSE35925": {"is_usable": false, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": true, "has_age": true, "has_gender": false, "sample_size": 30, "note": "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"}, "GSE224330": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": true, "has_gender": true, "sample_size": 21, "note": "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"}, "GSE20881": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": true, "has_gender": false, "sample_size": 172, "note": "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"}, "GSE152073": {"is_usable": false, "is_gene_available": true, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}, "TCGA": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}}
p3/preprocess/Osteoporosis/gene_data/GSE224330.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Osteoporosis/gene_data/GSE35925.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Osteoporosis/gene_data/GSE51495.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Osteoporosis/gene_data/GSE56815.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Ovarian_Cancer/GSE103737.csv ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,Ovarian_Cancer,Age,LOC100134822,LOC728323,OR4F16,OR4F17,OR4F21,OR4F29,OR4F3,OR4F4,OR4F5,PCMTD2,SEPT14
2
+ GSM2780375,0.0,70.0,148.1474,150.4829,140.5476,146.1325,129.6892,161.0859,142.546,137.6938,129.3476,477.2197,139.9557
3
+ GSM2780376,1.0,49.0,151.1738,127.2679,128.5329,113.0986,135.3618,119.3048,103.7985,141.5891,128.6244,535.9282,129.7885
4
+ GSM2780377,0.0,87.0,140.1681,168.5486,133.629,136.9969,133.8598,151.2032,120.6571,144.8378,120.4735,132.1934,155.0672
5
+ GSM2780378,0.0,65.0,142.2561,144.2652,237.7599,149.0566,143.0213,143.3778,114.5092,136.0723,183.2293,192.5499,170.9659
6
+ GSM2780379,1.0,63.0,139.2823,138.7674,170.8768,129.5256,137.1044,166.1435,120.2582,123.7442,123.7179,1475.709,157.9394
7
+ GSM2780380,0.0,50.0,147.6276,160.5659,134.8717,135.0339,138.474,136.8468,127.2872,122.0931,130.4489,601.1242,128.7705
8
+ GSM2780381,1.0,71.0,157.6772,147.5892,129.6852,119.1871,121.9266,143.0767,138.1349,129.7099,122.3126,806.8456,146.0565
9
+ GSM2780382,1.0,62.0,170.7259,166.1833,144.9334,129.9704,126.4328,144.1366,146.4984,120.4652,129.0431,1060.186,114.4499
10
+ GSM2780383,0.0,51.0,158.6174,145.51,140.5417,115.2533,119.7138,132.1541,130.6628,156.5017,118.4689,540.6039,144.6791
11
+ GSM2780384,1.0,68.0,158.5177,154.4557,130.2989,134.1626,127.3807,138.2547,138.5458,120.409,145.1578,549.1786,131.5628
12
+ GSM2780385,0.0,48.0,153.885,149.9123,118.8109,151.7568,140.7405,142.0517,108.2005,132.9409,127.665,654.7401,119.2634
13
+ GSM2780386,0.0,61.0,154.3213,153.96,144.6533,157.3129,138.294,139.6931,112.5421,126.0716,126.981,535.9282,156.2981
14
+ GSM2780387,1.0,79.0,179.1139,154.4781,173.3721,147.5036,135.5573,171.7765,167.6637,129.1264,120.4585,917.7701,125.332
15
+ GSM2780388,1.0,48.0,159.237,174.4524,150.8023,137.3094,135.3887,173.2336,120.4212,126.766,121.4661,522.7014,157.6482
16
+ GSM2780389,1.0,63.0,157.9621,158.5465,186.6462,177.6819,134.8361,132.339,116.1931,134.414,125.9951,427.186,141.0976
17
+ GSM2780390,1.0,61.0,149.7424,152.8191,127.4327,123.4825,120.4282,138.3374,117.189,127.8536,137.1003,515.8915,118.035
18
+ GSM2780391,1.0,73.0,153.5359,189.3186,166.5479,135.373,126.2287,127.2657,127.9662,121.2187,118.3354,857.4412,134.2314
19
+ GSM2780392,0.0,71.0,157.0567,151.5253,153.6184,132.8356,110.1493,158.8154,124.8502,114.147,122.8154,1207.784,143.0232
20
+ GSM2780393,0.0,62.0,148.8916,144.2401,132.3955,135.8911,137.5205,131.2753,114.6497,155.3472,147.9694,922.9562,154.1745
21
+ GSM2780394,1.0,76.0,145.0038,160.0126,139.0942,150.7774,134.7155,121.7395,123.7471,139.2838,128.386,647.1987,117.2556
22
+ GSM2780395,0.0,59.0,146.5444,126.8839,143.1989,142.4931,131.3446,144.227,120.8292,134.1595,137.2769,291.3504,144.5002
23
+ GSM2780396,0.0,69.0,148.1623,176.6878,143.2046,143.8728,124.2218,146.4001,150.5381,145.9149,151.242,924.5129,127.1964
24
+ GSM2780397,1.0,39.0,150.1274,134.2168,149.8417,148.0352,126.1649,134.108,133.2684,106.2063,123.7707,733.3588,132.8029
25
+ GSM2780398,1.0,65.0,144.2858,142.9747,139.2505,130.656,133.9532,147.2331,131.8408,130.238,118.531,753.2493,113.2471
26
+ GSM2780399,1.0,56.0,147.5795,144.2085,134.3499,130.2167,140.7567,156.1845,114.8766,127.1018,126.8563,413.003,139.2823
27
+ GSM2780400,1.0,49.0,127.7811,132.8632,156.1717,139.2721,135.6983,135.6382,120.0992,135.8306,136.7028,149.5,138.0314
28
+ GSM2780401,1.0,47.0,148.7875,136.4164,120.8846,139.1921,145.1947,122.6638,130.9061,119.5228,144.4464,838.3977,132.4743
29
+ GSM2780402,0.0,53.0,156.5336,144.3169,154.3773,144.0182,149.3849,141.5173,111.2625,139.2969,135.5748,466.3928,152.8175
30
+ GSM2780403,0.0,58.0,138.6333,129.4631,162.1431,128.8583,141.2835,155.5744,119.8284,123.425,132.0383,448.397,160.8635
31
+ GSM2780404,1.0,77.0,150.107,152.585,160.6556,119.6613,129.2533,137.2228,110.9531,132.8716,140.8227,557.5587,169.4912
32
+ GSM2780405,0.0,80.0,136.1975,123.3719,160.9999,125.7355,136.0773,167.0076,111.5649,138.8803,146.6202,839.0475,117.6406
33
+ GSM2780406,1.0,40.0,138.2412,138.0241,157.4071,139.6745,144.097,136.2995,127.3475,119.8759,141.511,692.8201,137.0926
34
+ GSM2780407,0.0,65.0,135.8131,135.7009,156.5731,127.1886,134.2042,132.1725,108.8631,130.8856,136.1792,653.743,133.4593
35
+ GSM2780408,0.0,56.0,151.3822,139.0345,187.8255,130.9559,128.656,136.0134,124.5622,127.9743,135.4219,872.786,130.292
36
+ GSM2780409,0.0,41.0,133.6516,139.1173,139.9748,118.8757,130.0767,118.9837,132.785,130.4583,144.796,1809.96,145.8106
37
+ GSM2780410,1.0,50.0,137.2507,130.2281,158.9107,119.1837,145.3489,135.1674,130.4015,117.5014,142.8862,1619.898,135.5591
38
+ GSM2780411,0.0,44.0,139.3879,133.03,145.3296,146.6923,127.8111,128.0659,123.1765,138.592,147.1908,508.7302,154.4657
39
+ GSM2780412,1.0,60.0,130.7255,135.6714,134.4184,146.3327,133.0488,131.2092,118.4678,124.8006,134.6865,1188.006,153.5572
40
+ GSM2780413,0.0,64.0,132.5919,136.4207,181.2776,130.154,139.5014,166.8208,121.0302,129.263,155.0195,556.0098,156.6919
41
+ GSM2780414,0.0,47.0,125.0704,139.9861,153.1313,131.8919,124.672,125.1987,110.77,146.9755,138.6169,530.2432,150.0542
42
+ GSM2780415,0.0,33.0,135.5591,142.7901,165.1078,126.6954,145.3804,154.5715,107.2619,127.0656,139.4895,227.4478,146.5758
43
+ GSM2780416,1.0,75.0,127.0462,144.4063,146.4288,132.4764,127.0514,140.35,128.4022,110.6689,130.0971,678.6068,146.0822
44
+ GSM2780417,1.0,48.0,125.6448,157.1682,140.0072,130.0566,144.5518,126.2086,116.1597,124.6407,141.0729,660.8083,138.4035
45
+ GSM2780418,1.0,45.0,128.1286,147.9749,153.3168,135.8911,125.0589,136.9154,126.2534,131.0951,114.023,867.0701,145.0612
46
+ GSM2780419,0.0,79.0,122.4957,134.248,135.945,127.0882,127.9884,136.4382,121.9399,125.8369,136.1986,801.9775,137.3432
47
+ GSM2780420,0.0,37.0,137.1405,154.6223,144.819,142.833,139.9742,129.6634,125.6645,127.117,138.04,827.6677,150.9339
48
+ GSM2780421,0.0,50.0,130.8453,139.0131,154.6141,136.8158,128.1535,132.1264,113.7357,121.0446,128.6573,466.7684,147.1684
49
+ GSM2780422,0.0,41.0,129.3235,118.9024,168.113,147.1098,131.9431,145.4413,138.8472,141.5102,130.516,381.7725,125.6787
50
+ GSM2780423,0.0,61.0,146.5136,133.3583,182.2477,122.3539,156.9961,133.0196,126.1131,135.5303,161.6706,521.0088,125.8651
51
+ GSM2780424,0.0,50.0,141.4182,131.5891,150.4231,153.3776,142.9796,131.6326,101.0146,134.9088,135.2262,176.5206,151.8137
52
+ GSM2780425,1.0,63.0,165.2336,137.9187,147.9992,133.2748,136.9234,117.6218,144.6878,128.8611,125.3749,753.8748,156.0522
53
+ GSM2780426,1.0,64.0,130.1179,138.5803,146.6793,135.9131,124.0656,148.3423,120.3719,117.0752,143.8526,695.4315,139.6061
54
+ GSM2780427,0.0,62.0,144.4167,149.2331,143.5516,154.2192,138.1967,129.6728,142.8046,141.2133,127.8837,981.7425,188.1255
55
+ GSM2780428,0.0,61.0,136.1309,119.431,143.9462,138.775,130.5045,161.5407,135.7604,122.985,171.5278,353.8782,134.7972
56
+ GSM2780429,1.0,72.0,128.8391,144.625,148.92,143.3892,126.5483,119.6271,111.0942,119.3781,134.227,551.3032,144.6457
57
+ GSM2780430,1.0,49.0,141.101,139.8503,147.5077,152.6259,121.6719,147.5665,125.4827,123.6897,123.4595,891.0457,114.6792
58
+ GSM2780431,0.0,84.0,140.8909,112.2285,157.7842,173.6931,143.7415,125.5662,118.1438,133.7386,144.1775,502.6177,162.4258
59
+ GSM2780432,1.0,84.0,132.3634,143.93,135.2879,127.6397,130.4383,137.3928,139.0268,118.0437,125.3917,933.6882,138.2066
60
+ GSM2780433,0.0,55.0,118.7381,158.9438,165.3152,144.182,156.5042,137.2369,110.2499,135.2668,155.7717,694.3846,109.3753
61
+ GSM2780434,0.0,71.0,148.0442,148.8008,171.5341,147.614,216.246,140.465,112.9833,152.6894,162.5141,129.4911,364.7731
62
+ GSM2780435,0.0,51.0,133.9248,154.9131,165.1739,140.3283,127.7816,139.1788,124.7351,132.6204,131.4572,341.1895,160.788
63
+ GSM2780436,0.0,46.0,132.5415,130.6332,162.0885,141.823,155.2448,130.4367,118.6578,129.9632,165.1815,1213.195,135.8996
64
+ GSM2780437,0.0,61.0,124.2994,150.9017,149.5039,136.1221,137.8038,131.1716,112.5856,122.8722,133.9551,971.6393,122.0997
65
+ GSM2780438,1.0,56.0,150.4251,128.3631,194.1595,127.1858,136.0373,130.3547,107.1555,132.428,142.7373,617.2452,124.0319
66
+ GSM2780439,0.0,70.0,129.8104,157.7672,154.4014,130.3385,146.5935,122.7332,124.2183,138.8663,128.4429,159.6638,146.1458
67
+ GSM2780440,0.0,66.0,148.7135,162.2212,146.1852,135.3104,119.8158,166.4444,111.5524,128.1964,123.8915,1408.647,135.4673
68
+ GSM2780441,0.0,82.0,131.8869,142.0731,157.2071,131.9369,156.8676,130.8792,112.3696,124.8941,123.5103,213.597,148.9256
69
+ GSM2780442,0.0,55.0,131.6628,144.6894,156.2398,123.1884,131.9819,128.4311,113.7435,123.7182,139.8721,413.735,149.6084
70
+ GSM2780443,0.0,66.0,127.2466,131.7491,161.7055,143.0948,143.749,137.7962,98.53481,134.9482,134.9387,443.3629,149.4673
71
+ GSM2780444,0.0,29.0,136.5405,152.6445,183.8123,129.7624,121.7156,138.412,115.862,120.6684,131.399,846.2023,141.0224
72
+ GSM2780445,0.0,62.0,135.2842,144.7729,146.9741,138.251,140.0267,125.0221,144.9633,114.899,143.9051,853.7433,129.6417
73
+ GSM2780446,0.0,52.0,143.2046,128.7557,152.1104,154.3909,128.3082,133.2705,121.4597,122.3622,140.197,341.5268,156.9106
74
+ GSM2780447,1.0,76.0,149.0325,127.9022,130.6677,121.3343,144.5089,139.015,126.6603,133.4541,134.6325,822.4395,136.5425
75
+ GSM2780448,1.0,78.0,152.7639,136.756,146.7131,132.5808,156.5833,132.9439,117.2801,132.1315,126.5299,640.1565,131.0473
76
+ GSM2780449,1.0,65.0,144.2989,124.3994,156.5336,145.4888,137.4373,136.6523,117.3444,135.2831,137.1504,553.3001,139.2939
77
+ GSM2780450,1.0,50.0,133.6732,127.9715,148.4674,143.1721,143.2752,169.5596,120.9203,128.8042,141.1279,124.2001,147.8241
78
+ GSM2780451,0.0,52.0,134.4248,123.5653,141.3203,128.5459,135.8661,166.5338,113.2075,127.1877,138.2621,554.8771,144.484
79
+ GSM2780452,0.0,53.0,143.2816,139.6931,154.4884,149.8454,135.1595,152.8396,114.6311,127.7628,137.4556,1107.68,136.4207
80
+ GSM2780453,1.0,70.0,140.078,130.7791,145.2247,125.8212,120.097,112.8821,103.0719,130.0003,135.2155,964.5938,142.0856
81
+ GSM2780454,0.0,68.0,142.7568,123.6239,145.7416,131.6304,130.2879,156.8588,118.4258,130.245,128.9085,1217.158,142.9955
82
+ GSM2780455,1.0,71.0,139.9294,123.7533,167.3422,151.7005,126.2089,137.44,111.2539,128.8332,119.9263,310.2491,191.0594
83
+ GSM2780456,1.0,60.0,138.8647,139.5175,132.9339,131.3496,149.2309,145.6001,118.5358,135.1621,133.9789,470.6697,136.9093
84
+ GSM2780457,1.0,63.0,133.8176,124.1333,158.0048,151.8412,135.0838,130.1015,115.6449,150.7096,149.0262,355.9268,139.6006
85
+ GSM2780458,1.0,76.0,164.4505,141.6328,149.0343,128.3387,128.1882,120.9977,124.7843,124.2418,136.7641,480.944,141.3578
86
+ GSM2780459,1.0,41.0,134.621,162.1767,147.1393,147.7974,137.1073,115.0049,126.0736,119.4635,134.4987,1760.217,139.3687
87
+ GSM2780460,1.0,76.0,152.5015,136.7785,175.4765,159.1444,137.835,122.0565,140.3907,126.6974,138.2045,830.5543,131.0542
88
+ GSM2780461,1.0,53.0,135.2027,135.9312,159.1959,144.0145,133.1726,131.0081,116.655,126.284,123.3066,635.0873,159.2173
89
+ GSM2780462,1.0,47.0,145.679,138.9629,157.589,151.4459,171.2333,128.9387,103.7065,121.6965,148.6492,161.2783,155.1987
90
+ GSM2780463,1.0,51.0,173.651,152.0614,632.0125,175.9302,205.2469,168.2908,115.0434,168.4086,377.5355,123.698,164.0342
91
+ GSM2780464,1.0,51.0,144.8689,141.18,147.4945,127.4273,141.8956,132.1612,111.2316,132.4898,156.3039,523.7499,163.0995
92
+ GSM2780465,1.0,29.0,152.723,130.3622,180.6228,136.7498,135.9199,129.2056,118.3722,129.9361,145.9855,342.0934,145.178
93
+ GSM2780466,1.0,66.0,162.1216,136.9868,158.9825,148.8953,129.6621,126.5877,125.9683,132.2924,136.8388,1372.816,169.2209
94
+ GSM2780467,1.0,56.0,135.2047,172.2347,130.1629,146.3273,135.5803,138.4874,113.4738,124.1091,145.3038,624.8786,160.3689
95
+ GSM2780468,1.0,56.0,144.5875,141.4201,169.4176,144.5279,127.0651,120.6412,119.1837,124.1324,124.1285,1022.497,142.5879
96
+ GSM2780469,1.0,53.0,125.417,133.4961,161.3357,139.9122,139.6361,135.9111,129.4861,121.8867,144.2204,1019.514,137.7454
97
+ GSM2780470,1.0,51.0,131.8514,128.6949,139.2334,141.9496,146.3349,128.5082,115.4384,155.4573,127.8087,273.4458,131.2592
98
+ GSM2780471,1.0,42.0,138.4176,144.8672,124.9049,138.6012,137.6517,143.8214,119.3961,120.6074,139.7775,1137.128,145.1648
p3/preprocess/Ovarian_Cancer/GSE126308.csv ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,Ovarian_Cancer,OR4F16,OR4F17,OR4F21,OR4F29,OR4F2P,OR4F3,OR4F4,OR4F5,PCMTD2,SEPT14
2
+ GSM3596018,1.0,1.1038999999999999,1.93485,0.8863,1.1038999999999999,2.9539,1.1038999999999999,0.65045,1.84025,0.3265,1.1294
3
+ GSM3596019,0.0,1.1315,1.7313999999999998,0.90105,1.1315,2.8593,1.1315,0.5592,2.0276,0.3301375,1.15955
4
+ GSM3596020,1.0,1.09698,1.855725,0.90295,1.09698,2.8048,1.09698,0.569775,2.43165,0.3186,1.10475
5
+ GSM3596021,1.0,1.02318,1.9769999999999999,0.8887,1.02318,3.1112,1.02318,0.668,2.70775,0.3213375,1.111
6
+ GSM3596022,0.0,1.0914599999999999,1.7493,0.8682,1.0914599999999999,2.8358,1.0914599999999999,0.5825,1.5812,0.3224375,1.14705
7
+ GSM3596023,0.0,1.00236,1.654725,0.9183,1.00236,2.6416,1.00236,0.511375,1.55575,0.333025,1.0915
8
+ GSM3596024,1.0,1.10028,1.85355,0.92055,1.10028,2.3506,1.10028,0.67995,2.1577,0.334925,1.09705
9
+ GSM3596025,0.0,1.03812,1.50135,0.8826,1.03812,2.3856,1.03812,0.5034,1.2038,0.3274375,1.11985
10
+ GSM3596026,0.0,1.19286,1.806625,0.88,1.19286,2.5495,1.19286,0.560275,1.617,0.329675,1.12445
11
+ GSM3596027,1.0,1.0566200000000001,1.556575,0.88405,1.0566200000000001,2.6611,1.0566200000000001,0.561225,1.19845,0.323975,1.06355
12
+ GSM3596028,1.0,1.0181,1.69855,1.01045,1.0181,2.6752,1.0181,0.5716,1.59925,0.3085125,1.0788
13
+ GSM3596029,1.0,1.13052,1.876075,0.90475,1.13052,3.0823,1.13052,0.621975,2.28695,0.3252375,1.09445
14
+ GSM3596030,0.0,0.97544,1.6538249999999999,0.86515,0.97544,2.6613,0.97544,0.529675,1.59355,0.3380875,1.1147
15
+ GSM3596031,0.0,1.1423,1.80985,0.9449,1.1423,2.611,1.1423,0.6551,1.4344,0.34455,1.1027
16
+ GSM3596032,1.0,1.01522,1.389025,0.86615,1.01522,2.3013,1.01522,0.444425,1.1181,0.3177,1.04115
17
+ GSM3596033,1.0,1.12208,1.4165,0.9411,1.12208,2.4342,1.12208,0.4784,1.0871,0.3540875,1.05055
18
+ GSM3596034,1.0,1.11054,1.601875,0.93365,1.11054,2.4525,1.11054,0.556025,1.0706,0.3139875,1.03965
19
+ GSM3596035,1.0,1.0029599999999999,1.3947,0.8346,1.0029599999999999,2.1372,1.0029599999999999,0.46815,1.06835,0.34855,1.05655
20
+ GSM3596036,1.0,1.08018,1.319425,0.91375,1.08018,2.0914,1.08018,0.442775,1.1159,0.34255,1.04065
21
+ GSM3596037,1.0,1.0685799999999999,1.5192,0.96155,1.0685799999999999,2.1466,1.0685799999999999,0.52175,1.14455,0.297275,1.0645
22
+ GSM3596038,1.0,1.0879400000000001,1.627675,0.9202,1.0879400000000001,2.6044,1.0879400000000001,0.541075,1.16595,0.321725,1.10185
23
+ GSM3596039,1.0,0.997,1.3794,0.8499,0.997,2.1332,0.997,0.45985,1.1324,0.3533875,0.98625
24
+ GSM3596040,0.0,1.04034,1.824625,0.86155,1.04034,3.0166,1.04034,0.627175,1.6762,0.320375,1.06185
25
+ GSM3596041,0.0,1.0574999999999999,1.739725,0.90885,1.0574999999999999,2.9648,1.0574999999999999,0.553975,2.01185,0.3136625,1.1008
26
+ GSM3596042,0.0,0.9302999999999999,1.6775,0.8466,0.9302999999999999,2.3882,0.9302999999999999,0.57005,1.30495,0.331175,1.09985
27
+ GSM3596043,0.0,0.9519599999999999,1.643725,0.836,0.9519599999999999,2.4984,0.9519599999999999,0.538475,1.27585,0.3307125,1.097
28
+ GSM3596044,0.0,1.3031799999999998,1.7182,0.97965,1.3031799999999998,2.6856,1.3031799999999998,0.56205,1.70165,0.3093625,1.099
29
+ GSM3596045,0.0,1.198,1.6213000000000002,0.95055,1.198,2.5889,1.198,0.55065,1.27445,0.325925,1.09195
30
+ GSM3596046,0.0,1.04548,1.551975,0.9508,1.04548,2.3084,1.04548,0.527675,1.132,0.307825,1.02305
31
+ GSM3596047,0.0,1.079,1.6575000000000002,0.87435,1.079,2.3005,1.079,0.5489,1.17465,0.33975,1.09085
32
+ GSM3596048,0.0,1.1202999999999999,1.80085,0.90325,1.1202999999999999,3.0766,1.1202999999999999,0.55745,2.2407,0.3288375,1.188
33
+ GSM3596049,0.0,1.00234,1.3735,0.90565,1.00234,2.1946,1.00234,0.48055,1.00475,0.324375,1.0046
34
+ GSM3596050,0.0,1.06532,1.626125,0.89935,1.06532,2.9181,1.06532,0.544375,1.44635,0.3388875,1.1424
35
+ GSM3596051,0.0,0.98224,1.5731249999999999,0.89715,0.98224,3.0242,0.98224,0.510675,1.8813,0.3241625,1.08915
36
+ GSM3596052,0.0,1.1332,1.720675,0.918,1.1332,2.7398,1.1332,0.579575,1.169,0.316675,1.08515
37
+ GSM3596053,0.0,1.06618,1.6416250000000001,0.9081,1.06618,2.3786,1.06618,0.531625,1.16755,0.330225,1.0094
38
+ GSM3596054,1.0,1.07412,1.7476,0.8608,1.07412,2.4112,1.07412,0.59815,1.19255,0.3197375,1.1345
39
+ GSM3596055,0.0,1.02702,1.626725,0.9075,1.02702,2.6273,1.02702,0.537625,1.58755,0.306675,1.1137
40
+ GSM3596056,0.0,1.0926399999999998,1.7142499999999998,0.8377,1.0926399999999998,2.7003,1.0926399999999998,0.5293,1.8393,0.3270875,1.0987
41
+ GSM3596057,0.0,1.1472799999999999,1.588,0.9738,1.1472799999999999,2.398,1.1472799999999999,0.54435,1.18805,0.313025,1.05535
42
+ GSM3596058,0.0,1.16818,1.5757750000000001,0.8934,1.16818,2.5023,1.16818,0.516075,1.715,0.3150625,1.1991
43
+ GSM3596059,1.0,1.0506,1.429375,0.9795,1.0506,2.1811,1.0506,0.479775,1.12755,0.359625,1.0516
44
+ GSM3596060,1.0,1.04316,1.598825,0.7979,1.04316,2.2633,1.04316,0.542125,1.1313,0.3236875,1.07085
45
+ GSM3596061,0.0,1.0114,1.60405,0.82905,1.0114,2.3205,1.0114,0.5417,1.1783,0.304575,1.12615
46
+ GSM3596062,0.0,0.9969399999999999,1.717025,0.9196,0.9969399999999999,2.4692,0.9969399999999999,0.554225,1.51795,0.316525,1.06445
47
+ GSM3596063,1.0,1.0904800000000001,1.5726499999999999,0.89345,1.0904800000000001,2.5913,1.0904800000000001,0.5336,1.19855,0.2935375,1.10655
48
+ GSM3596064,0.0,1.0274,1.394725,0.8342,1.0274,2.2859,1.0274,0.464725,1.13885,0.2918375,1.03085
49
+ GSM3596065,0.0,1.1783799999999998,1.549275,0.9771,1.1783799999999998,2.588,1.1783799999999998,0.508475,1.33395,0.3285375,1.12305
50
+ GSM3596066,0.0,0.97912,1.492725,0.8911,0.97912,2.2094,0.97912,0.493125,1.16345,0.3435875,1.02845
51
+ GSM3596067,1.0,1.12518,1.5860500000000002,0.8953,1.12518,2.333,1.12518,0.5291,1.11775,0.3127875,1.1193
p3/preprocess/Ovarian_Cancer/GSE130402.csv ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,Ovarian_Cancer,OR4F16,OR4F21,OR4F29,OR4F3,PCMTD2
2
+ GSM3737598,1.0,1.08103,1.08103,1.08103,1.08103,13.16369
3
+ GSM3737599,1.0,1.1660575,1.1660575,1.1660575,1.1660575,13.75099
4
+ GSM3737600,1.0,1.0806375,1.0806375,1.0806375,1.0806375,12.99074
5
+ GSM3737601,1.0,0.75892,0.75892,0.75892,0.75892,14.31546
6
+ GSM3737602,1.0,0.67926,0.67926,0.67926,0.67926,13.82473
7
+ GSM3737603,1.0,0.662415,0.662415,0.662415,0.662415,13.71282
8
+ GSM3737604,1.0,0.8219025,0.8219025,0.8219025,0.8219025,13.643070000000002
9
+ GSM3737605,1.0,0.749635,0.749635,0.749635,0.749635,14.36598
10
+ GSM3737606,1.0,0.7860425,0.7860425,0.7860425,0.7860425,14.01886
11
+ GSM3737607,1.0,0.7716675,0.7716675,0.7716675,0.7716675,12.43657
12
+ GSM3737608,1.0,0.845975,0.845975,0.845975,0.845975,12.961129999999999
13
+ GSM3737609,1.0,0.69797,0.69797,0.69797,0.69797,12.997860000000001
14
+ GSM3737610,1.0,0.711935,0.711935,0.711935,0.711935,13.75419
15
+ GSM3737611,1.0,0.8889775,0.8889775,0.8889775,0.8889775,13.08389
16
+ GSM3737612,1.0,0.692785,0.692785,0.692785,0.692785,14.0457
17
+ GSM3737613,1.0,1.17924,1.17924,1.17924,1.17924,15.201139999999999
18
+ GSM3737614,1.0,1.17424,1.17424,1.17424,1.17424,16.15484
19
+ GSM3737615,1.0,1.10305,1.10305,1.10305,1.10305,15.613589999999999
20
+ GSM3737616,1.0,1.1399975,1.1399975,1.1399975,1.1399975,11.99048
21
+ GSM3737617,1.0,1.180205,1.180205,1.180205,1.180205,11.81727
22
+ GSM3737618,1.0,1.11252,1.11252,1.11252,1.11252,11.99252
23
+ GSM3737619,1.0,1.15204,1.15204,1.15204,1.15204,12.99375
24
+ GSM3737620,1.0,1.0660475,1.0660475,1.0660475,1.0660475,12.97587
25
+ GSM3737621,1.0,1.075605,1.075605,1.075605,1.075605,12.9498
26
+ GSM3737622,1.0,1.1825375,1.1825375,1.1825375,1.1825375,12.172559999999999
27
+ GSM3737623,1.0,1.1675325,1.1675325,1.1675325,1.1675325,12.27539
28
+ GSM3737624,1.0,1.0462,1.0462,1.0462,1.0462,12.45211
29
+ GSM3737625,1.0,1.04646,1.04646,1.04646,1.04646,12.607790000000001
30
+ GSM3737626,1.0,1.0360375,1.0360375,1.0360375,1.0360375,12.579839999999999
31
+ GSM3737627,1.0,1.0844175,1.0844175,1.0844175,1.0844175,12.3286
32
+ GSM3737628,0.0,0.6822775,0.6822775,0.6822775,0.6822775,14.20168
33
+ GSM3737629,0.0,0.6851475,0.6851475,0.6851475,0.6851475,14.42504
34
+ GSM3737630,0.0,0.74241,0.74241,0.74241,0.74241,14.77932
35
+ GSM3737631,0.0,0.829715,0.829715,0.829715,0.829715,14.21261
36
+ GSM3737632,0.0,0.613205,0.613205,0.613205,0.613205,13.93436
37
+ GSM3737633,0.0,0.7990775,0.7990775,0.7990775,0.7990775,15.1246
38
+ GSM3737634,0.0,0.71323,0.71323,0.71323,0.71323,13.64972
39
+ GSM3737635,0.0,0.67027,0.67027,0.67027,0.67027,14.128079999999999
40
+ GSM3737636,0.0,0.6319275,0.6319275,0.6319275,0.6319275,13.98054
41
+ GSM3737637,0.0,0.6785525,0.6785525,0.6785525,0.6785525,14.351959999999998
42
+ GSM3737638,0.0,0.7664675,0.7664675,0.7664675,0.7664675,14.14703
43
+ GSM3737639,0.0,0.67094,0.67094,0.67094,0.67094,13.848239999999999
44
+ GSM3737640,0.0,0.656505,0.656505,0.656505,0.656505,13.42693
45
+ GSM3737641,0.0,0.66234,0.66234,0.66234,0.66234,13.672350000000002
46
+ GSM3737642,0.0,0.567475,0.567475,0.567475,0.567475,13.397260000000001
p3/preprocess/Ovarian_Cancer/clinical_data/GSE103737.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ ,GSM2780375,GSM2780376,GSM2780377,GSM2780378,GSM2780379,GSM2780380,GSM2780381,GSM2780382,GSM2780383,GSM2780384,GSM2780385,GSM2780386,GSM2780387,GSM2780388,GSM2780389,GSM2780390,GSM2780391,GSM2780392,GSM2780393,GSM2780394,GSM2780395,GSM2780396,GSM2780397,GSM2780398,GSM2780399,GSM2780400,GSM2780401,GSM2780402,GSM2780403,GSM2780404,GSM2780405,GSM2780406,GSM2780407,GSM2780408,GSM2780409,GSM2780410,GSM2780411,GSM2780412,GSM2780413,GSM2780414,GSM2780415,GSM2780416,GSM2780417,GSM2780418,GSM2780419,GSM2780420,GSM2780421,GSM2780422,GSM2780423,GSM2780424,GSM2780425,GSM2780426,GSM2780427,GSM2780428,GSM2780429,GSM2780430,GSM2780431,GSM2780432,GSM2780433,GSM2780434,GSM2780435,GSM2780436,GSM2780437,GSM2780438,GSM2780439,GSM2780440,GSM2780441,GSM2780442,GSM2780443,GSM2780444,GSM2780445,GSM2780446,GSM2780447,GSM2780448,GSM2780449,GSM2780450,GSM2780451,GSM2780452,GSM2780453,GSM2780454,GSM2780455,GSM2780456,GSM2780457,GSM2780458,GSM2780459,GSM2780460,GSM2780461,GSM2780462,GSM2780463,GSM2780464,GSM2780465,GSM2780466,GSM2780467,GSM2780468,GSM2780469,GSM2780470,GSM2780471
2
+ Ovarian_Cancer,0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
3
+ Age,70.0,49.0,87.0,65.0,63.0,50.0,71.0,62.0,51.0,68.0,48.0,61.0,79.0,48.0,63.0,61.0,73.0,71.0,62.0,76.0,59.0,69.0,39.0,65.0,56.0,49.0,47.0,53.0,58.0,77.0,80.0,40.0,65.0,56.0,41.0,50.0,44.0,60.0,64.0,47.0,33.0,75.0,48.0,45.0,79.0,37.0,50.0,41.0,61.0,50.0,63.0,64.0,62.0,61.0,72.0,49.0,84.0,84.0,55.0,71.0,51.0,46.0,61.0,56.0,70.0,66.0,82.0,55.0,66.0,29.0,62.0,52.0,76.0,78.0,65.0,50.0,52.0,53.0,70.0,68.0,71.0,60.0,63.0,76.0,41.0,76.0,53.0,47.0,51.0,51.0,29.0,66.0,56.0,56.0,53.0,51.0,42.0
p3/preprocess/Ovarian_Cancer/clinical_data/GSE126132.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM3592180,GSM3592181,GSM3592182,GSM3592183,GSM3592184,GSM3592185,GSM3592186,GSM3592187,GSM3592188,GSM3592189,GSM3592190,GSM3592191,GSM3592192,GSM3592193,GSM3592194,GSM3592195,GSM3592196,GSM3592197,GSM3592198,GSM3592199,GSM3592200,GSM3592201,GSM3592202,GSM3592203,GSM3592204,GSM3592205,GSM3592206,GSM3592207,GSM3592208,GSM3592209,GSM3592210,GSM3592211,GSM3592212,GSM3592213
2
+ Ovarian_Cancer,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p3/preprocess/Ovarian_Cancer/clinical_data/GSE126133.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM3592180,GSM3592181,GSM3592182,GSM3592183,GSM3592184,GSM3592185,GSM3592186,GSM3592187,GSM3592188,GSM3592189,GSM3592190,GSM3592191,GSM3592192,GSM3592193,GSM3592194,GSM3592195,GSM3592196,GSM3592197,GSM3592198,GSM3592199,GSM3592200,GSM3592201,GSM3592202,GSM3592203,GSM3592204,GSM3592205,GSM3592206,GSM3592207,GSM3592208,GSM3592209,GSM3592210,GSM3592211,GSM3592212,GSM3592213
2
+ Ovarian_Cancer,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p3/preprocess/Ovarian_Cancer/clinical_data/GSE126308.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM3596018,GSM3596019,GSM3596020,GSM3596021,GSM3596022,GSM3596023,GSM3596024,GSM3596025,GSM3596026,GSM3596027,GSM3596028,GSM3596029,GSM3596030,GSM3596031,GSM3596032,GSM3596033,GSM3596034,GSM3596035,GSM3596036,GSM3596037,GSM3596038,GSM3596039,GSM3596040,GSM3596041,GSM3596042,GSM3596043,GSM3596044,GSM3596045,GSM3596046,GSM3596047,GSM3596048,GSM3596049,GSM3596050,GSM3596051,GSM3596052,GSM3596053,GSM3596054,GSM3596055,GSM3596056,GSM3596057,GSM3596058,GSM3596059,GSM3596060,GSM3596061,GSM3596062,GSM3596063,GSM3596064,GSM3596065,GSM3596066,GSM3596067
2
+ Ovarian_Cancer,1.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0
p3/preprocess/Ovarian_Cancer/clinical_data/GSE130402.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM3737598,GSM3737599,GSM3737600,GSM3737601,GSM3737602,GSM3737603,GSM3737604,GSM3737605,GSM3737606,GSM3737607,GSM3737608,GSM3737609,GSM3737610,GSM3737611,GSM3737612,GSM3737613,GSM3737614,GSM3737615,GSM3737616,GSM3737617,GSM3737618,GSM3737619,GSM3737620,GSM3737621,GSM3737622,GSM3737623,GSM3737624,GSM3737625,GSM3737626,GSM3737627,GSM3737628,GSM3737629,GSM3737630,GSM3737631,GSM3737632,GSM3737633,GSM3737634,GSM3737635,GSM3737636,GSM3737637,GSM3737638,GSM3737639,GSM3737640,GSM3737641,GSM3737642
2
+ Ovarian_Cancer,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
p3/preprocess/Ovarian_Cancer/clinical_data/GSE132342.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ ,GSM3856606,GSM3856607,GSM3856608,GSM3856609,GSM3856610,GSM3856611,GSM3856612,GSM3856613,GSM3856614,GSM3856615,GSM3856616,GSM3856617,GSM3856618,GSM3856619,GSM3856620,GSM3856621,GSM3856622,GSM3856623,GSM3856624,GSM3856625,GSM3856626,GSM3856627,GSM3856628,GSM3856629,GSM3856630,GSM3856631,GSM3856632,GSM3856633,GSM3856634,GSM3856635,GSM3856636,GSM3856637,GSM3856638,GSM3856639,GSM3856640,GSM3856641,GSM3856642,GSM3856643,GSM3856644,GSM3856645,GSM3856646,GSM3856647,GSM3856648,GSM3856649,GSM3856650,GSM3856651,GSM3856652,GSM3856653,GSM3856654,GSM3856655,GSM3856656,GSM3856657,GSM3856658,GSM3856659,GSM3856660,GSM3856661,GSM3856662,GSM3856663,GSM3856664,GSM3856665,GSM3856666,GSM3856667,GSM3856668,GSM3856669,GSM3856670,GSM3856671,GSM3856672,GSM3856673,GSM3856674,GSM3856675,GSM3856676,GSM3856677,GSM3856678,GSM3856679,GSM3856680,GSM3856681,GSM3856682,GSM3856683,GSM3856684,GSM3856685,GSM3856686,GSM3856687,GSM3856688,GSM3856689,GSM3856690,GSM3856691,GSM3856692,GSM3856693,GSM3856694,GSM3856695,GSM3856696,GSM3856697,GSM3856698,GSM3856699,GSM3856700,GSM3856701,GSM3856702,GSM3856703,GSM3856704,GSM3856705,GSM3856706,GSM3856707,GSM3856708,GSM3856709,GSM3856710,GSM3856711,GSM3856712,GSM3856713,GSM3856714,GSM3856715,GSM3856716,GSM3856717,GSM3856718,GSM3856719,GSM3856720,GSM3856721,GSM3856722,GSM3856723,GSM3856724,GSM3856725,GSM3856726,GSM3856727,GSM3856728,GSM3856729,GSM3856730,GSM3856731,GSM3856732,GSM3856733,GSM3856734,GSM3856735,GSM3856736,GSM3856737,GSM3856738,GSM3856739,GSM3856740,GSM3856741,GSM3856742,GSM3856743,GSM3856744,GSM3856745,GSM3856746,GSM3856747,GSM3856748,GSM3856749,GSM3856750,GSM3856751,GSM3856752,GSM3856753,GSM3856754,GSM3856755,GSM3856756,GSM3856757,GSM3856758,GSM3856759,GSM3856760,GSM3856761,GSM3856762,GSM3856763,GSM3856764,GSM3856765,GSM3856766,GSM3856767,GSM3856768,GSM3856769,GSM3856770,GSM3856771,GSM3856772,GSM3856773,GSM3856774,GSM3856775,GSM3856776,GSM3856777,GSM3856778,GSM3856779,GSM3856780,GSM3856781,GSM3856782,GSM3856783,GSM3856784,GSM3856785,GSM3856786,GSM3856787,GSM3856788,GSM3856789,GSM3856790,GSM3856791,GSM3856792,GSM3856793,GSM3856794,GSM3856795,GSM3856796,GSM3856797,GSM3856798,GSM3856799,GSM3856800,GSM3856801,GSM3856802,GSM3856803,GSM3856804,GSM3856805,GSM3856806,GSM3856807,GSM3856808,GSM3856809,GSM3856810,GSM3856811,GSM3856812,GSM3856813,GSM3856814,GSM3856815,GSM3856816,GSM3856817,GSM3856818,GSM3856819,GSM3856820,GSM3856821,GSM3856822,GSM3856823,GSM3856824,GSM3856825,GSM3856826,GSM3856827,GSM3856828,GSM3856829,GSM3856830,GSM3856831,GSM3856832,GSM3856833,GSM3856834,GSM3856835,GSM3856836,GSM3856837,GSM3856838,GSM3856839,GSM3856840,GSM3856841,GSM3856842,GSM3856843,GSM3856844,GSM3856845,GSM3856846,GSM3856847,GSM3856848,GSM3856849,GSM3856850,GSM3856851,GSM3856852,GSM3856853,GSM3856854,GSM3856855,GSM3856856,GSM3856857,GSM3856858,GSM3856859,GSM3856860,GSM3856861,GSM3856862,GSM3856863,GSM3856864,GSM3856865,GSM3856866,GSM3856867,GSM3856868,GSM3856869,GSM3856870,GSM3856871,GSM3856872,GSM3856873,GSM3856874,GSM3856875,GSM3856876,GSM3856877,GSM3856878,GSM3856879,GSM3856880,GSM3856881,GSM3856882,GSM3856883,GSM3856884,GSM3856885,GSM3856886,GSM3856887,GSM3856888,GSM3856889,GSM3856890,GSM3856891,GSM3856892,GSM3856893,GSM3856894,GSM3856895,GSM3856896,GSM3856897,GSM3856898,GSM3856899,GSM3856900,GSM3856901,GSM3856902,GSM3856903,GSM3856904,GSM3856905,GSM3856906,GSM3856907,GSM3856908,GSM3856909,GSM3856910,GSM3856911,GSM3856912,GSM3856913,GSM3856914,GSM3856915,GSM3856916,GSM3856917,GSM3856918,GSM3856919,GSM3856920,GSM3856921,GSM3856922,GSM3856923,GSM3856924,GSM3856925,GSM3856926,GSM3856927,GSM3856928,GSM3856929,GSM3856930,GSM3856931,GSM3856932,GSM3856933,GSM3856934,GSM3856935,GSM3856936,GSM3856937,GSM3856938,GSM3856939,GSM3856940,GSM3856941,GSM3856942,GSM3856943,GSM3856944,GSM3856945,GSM3856946,GSM3856947,GSM3856948,GSM3856949,GSM3856950,GSM3856951,GSM3856952,GSM3856953,GSM3856954,GSM3856955,GSM3856956,GSM3856957,GSM3856958,GSM3856959,GSM3856960,GSM3856961,GSM3856962,GSM3856963,GSM3856964,GSM3856965,GSM3856966,GSM3856967,GSM3856968,GSM3856969,GSM3856970,GSM3856971,GSM3856972,GSM3856973,GSM3856974,GSM3856975,GSM3856976,GSM3856977,GSM3856978,GSM3856979,GSM3856980,GSM3856981,GSM3856982,GSM3856983,GSM3856984,GSM3856985,GSM3856986,GSM3856987,GSM3856988,GSM3856989,GSM3856990,GSM3856991,GSM3856992,GSM3856993,GSM3856994,GSM3856995,GSM3856996,GSM3856997,GSM3856998,GSM3856999,GSM3857000,GSM3857001,GSM3857002,GSM3857003,GSM3857004,GSM3857005,GSM3857006,GSM3857007,GSM3857008,GSM3857009,GSM3857010,GSM3857011,GSM3857012,GSM3857013,GSM3857014,GSM3857015,GSM3857016,GSM3857017,GSM3857018,GSM3857019,GSM3857020,GSM3857021,GSM3857022,GSM3857023,GSM3857024,GSM3857025,GSM3857026,GSM3857027,GSM3857028,GSM3857029,GSM3857030,GSM3857031,GSM3857032,GSM3857033,GSM3857034,GSM3857035,GSM3857036,GSM3857037,GSM3857038,GSM3857039,GSM3857040,GSM3857041,GSM3857042,GSM3857043,GSM3857044,GSM3857045,GSM3857046,GSM3857047,GSM3857048,GSM3857049,GSM3857050,GSM3857051,GSM3857052,GSM3857053,GSM3857054,GSM3857055,GSM3857056,GSM3857057,GSM3857058,GSM3857059,GSM3857060,GSM3857061,GSM3857062,GSM3857063,GSM3857064,GSM3857065,GSM3857066,GSM3857067,GSM3857068,GSM3857069,GSM3857070,GSM3857071,GSM3857072,GSM3857073,GSM3857074,GSM3857075,GSM3857076,GSM3857077,GSM3857078,GSM3857079,GSM3857080,GSM3857081,GSM3857082,GSM3857083,GSM3857084,GSM3857085,GSM3857086,GSM3857087,GSM3857088,GSM3857089,GSM3857090,GSM3857091,GSM3857092,GSM3857093,GSM3857094,GSM3857095,GSM3857096,GSM3857097,GSM3857098,GSM3857099,GSM3857100,GSM3857101,GSM3857102,GSM3857103,GSM3857104,GSM3857105,GSM3857106,GSM3857107,GSM3857108,GSM3857109,GSM3857110,GSM3857111,GSM3857112,GSM3857113,GSM3857114,GSM3857115,GSM3857116,GSM3857117,GSM3857118,GSM3857119,GSM3857120,GSM3857121,GSM3857122,GSM3857123,GSM3857124,GSM3857125,GSM3857126,GSM3857127,GSM3857128,GSM3857129,GSM3857130,GSM3857131,GSM3857132,GSM3857133,GSM3857134,GSM3857135,GSM3857136,GSM3857137,GSM3857138,GSM3857139,GSM3857140,GSM3857141,GSM3857142,GSM3857143,GSM3857144,GSM3857145,GSM3857146,GSM3857147,GSM3857148,GSM3857149,GSM3857150,GSM3857151,GSM3857152,GSM3857153,GSM3857154,GSM3857155,GSM3857156,GSM3857157,GSM3857158,GSM3857159,GSM3857160,GSM3857161,GSM3857162,GSM3857163,GSM3857164,GSM3857165,GSM3857166,GSM3857167,GSM3857168,GSM3857169,GSM3857170,GSM3857171,GSM3857172,GSM3857173,GSM3857174,GSM3857175,GSM3857176,GSM3857177,GSM3857178,GSM3857179,GSM3857180,GSM3857181,GSM3857182,GSM3857183,GSM3857184,GSM3857185,GSM3857186,GSM3857187,GSM3857188,GSM3857189,GSM3857190,GSM3857191,GSM3857192,GSM3857193,GSM3857194,GSM3857195,GSM3857196,GSM3857197,GSM3857198,GSM3857199,GSM3857200,GSM3857201,GSM3857202,GSM3857203,GSM3857204,GSM3857205,GSM3857206,GSM3857207,GSM3857208,GSM3857209,GSM3857210,GSM3857211,GSM3857212,GSM3857213,GSM3857214,GSM3857215,GSM3857216,GSM3857217,GSM3857218,GSM3857219,GSM3857220,GSM3857221,GSM3857222,GSM3857223,GSM3857224,GSM3857225,GSM3857226,GSM3857227,GSM3857228,GSM3857229,GSM3857230,GSM3857231,GSM3857232,GSM3857233,GSM3857234,GSM3857235,GSM3857236,GSM3857237,GSM3857238,GSM3857239,GSM3857240,GSM3857241,GSM3857242,GSM3857243,GSM3857244,GSM3857245,GSM3857246,GSM3857247,GSM3857248,GSM3857249,GSM3857250,GSM3857251,GSM3857252,GSM3857253,GSM3857254,GSM3857255,GSM3857256,GSM3857257,GSM3857258,GSM3857259,GSM3857260,GSM3857261,GSM3857262,GSM3857263,GSM3857264,GSM3857265,GSM3857266,GSM3857267,GSM3857268,GSM3857269,GSM3857270,GSM3857271,GSM3857272,GSM3857273,GSM3857274,GSM3857275,GSM3857276,GSM3857277,GSM3857278,GSM3857279,GSM3857280,GSM3857281,GSM3857282,GSM3857283,GSM3857284,GSM3857285,GSM3857286,GSM3857287,GSM3857288,GSM3857289,GSM3857290,GSM3857291,GSM3857292,GSM3857293,GSM3857294,GSM3857295,GSM3857296,GSM3857297,GSM3857298,GSM3857299,GSM3857300,GSM3857301,GSM3857302,GSM3857303,GSM3857304,GSM3857305,GSM3857306,GSM3857307,GSM3857308,GSM3857309,GSM3857310,GSM3857311,GSM3857312,GSM3857313,GSM3857314,GSM3857315,GSM3857316,GSM3857317,GSM3857318,GSM3857319,GSM3857320,GSM3857321,GSM3857322,GSM3857323,GSM3857324,GSM3857325,GSM3857326,GSM3857327,GSM3857328,GSM3857329,GSM3857330,GSM3857331,GSM3857332,GSM3857333,GSM3857334,GSM3857335,GSM3857336,GSM3857337,GSM3857338,GSM3857339,GSM3857340,GSM3857341,GSM3857342,GSM3857343,GSM3857344,GSM3857345,GSM3857346,GSM3857347,GSM3857348,GSM3857349,GSM3857350,GSM3857351,GSM3857352,GSM3857353,GSM3857354,GSM3857355,GSM3857356,GSM3857357,GSM3857358,GSM3857359,GSM3857360,GSM3857361,GSM3857362,GSM3857363,GSM3857364,GSM3857365,GSM3857366,GSM3857367,GSM3857368,GSM3857369,GSM3857370,GSM3857371,GSM3857372,GSM3857373,GSM3857374,GSM3857375,GSM3857376,GSM3857377,GSM3857378,GSM3857379,GSM3857380,GSM3857381,GSM3857382,GSM3857383,GSM3857384,GSM3857385,GSM3857386,GSM3857387,GSM3857388,GSM3857389,GSM3857390,GSM3857391,GSM3857392,GSM3857393,GSM3857394,GSM3857395,GSM3857396,GSM3857397,GSM3857398,GSM3857399,GSM3857400,GSM3857401,GSM3857402,GSM3857403,GSM3857404,GSM3857405,GSM3857406,GSM3857407,GSM3857408,GSM3857409,GSM3857410,GSM3857411,GSM3857412,GSM3857413,GSM3857414,GSM3857415,GSM3857416,GSM3857417,GSM3857418,GSM3857419,GSM3857420,GSM3857421,GSM3857422,GSM3857423,GSM3857424,GSM3857425,GSM3857426,GSM3857427,GSM3857428,GSM3857429,GSM3857430,GSM3857431,GSM3857432,GSM3857433,GSM3857434,GSM3857435,GSM3857436,GSM3857437,GSM3857438,GSM3857439,GSM3857440,GSM3857441,GSM3857442,GSM3857443,GSM3857444,GSM3857445,GSM3857446,GSM3857447,GSM3857448,GSM3857449,GSM3857450,GSM3857451,GSM3857452,GSM3857453,GSM3857454,GSM3857455,GSM3857456,GSM3857457,GSM3857458,GSM3857459,GSM3857460,GSM3857461,GSM3857462,GSM3857463,GSM3857464,GSM3857465,GSM3857466,GSM3857467,GSM3857468,GSM3857469,GSM3857470,GSM3857471,GSM3857472,GSM3857473,GSM3857474,GSM3857475,GSM3857476,GSM3857477,GSM3857478,GSM3857479,GSM3857480,GSM3857481,GSM3857482,GSM3857483,GSM3857484,GSM3857485,GSM3857486,GSM3857487,GSM3857488,GSM3857489,GSM3857490,GSM3857491,GSM3857492,GSM3857493,GSM3857494,GSM3857495,GSM3857496,GSM3857497,GSM3857498,GSM3857499,GSM3857500,GSM3857501,GSM3857502,GSM3857503,GSM3857504,GSM3857505,GSM3857506,GSM3857507,GSM3857508,GSM3857509,GSM3857510,GSM3857511,GSM3857512,GSM3857513,GSM3857514,GSM3857515,GSM3857516,GSM3857517,GSM3857518,GSM3857519,GSM3857520,GSM3857521,GSM3857522,GSM3857523,GSM3857524,GSM3857525,GSM3857526,GSM3857527,GSM3857528,GSM3857529,GSM3857530,GSM3857531,GSM3857532,GSM3857533,GSM3857534,GSM3857535,GSM3857536,GSM3857537,GSM3857538,GSM3857539,GSM3857540,GSM3857541,GSM3857542,GSM3857543,GSM3857544,GSM3857545,GSM3857546,GSM3857547,GSM3857548,GSM3857549,GSM3857550,GSM3857551,GSM3857552,GSM3857553,GSM3857554,GSM3857555,GSM3857556,GSM3857557,GSM3857558,GSM3857559,GSM3857560,GSM3857561,GSM3857562,GSM3857563,GSM3857564,GSM3857565,GSM3857566,GSM3857567,GSM3857568,GSM3857569,GSM3857570,GSM3857571,GSM3857572,GSM3857573,GSM3857574,GSM3857575,GSM3857576,GSM3857577,GSM3857578,GSM3857579,GSM3857580,GSM3857581,GSM3857582,GSM3857583,GSM3857584,GSM3857585,GSM3857586,GSM3857587,GSM3857588,GSM3857589,GSM3857590,GSM3857591,GSM3857592,GSM3857593,GSM3857594,GSM3857595,GSM3857596,GSM3857597,GSM3857598,GSM3857599,GSM3857600,GSM3857601,GSM3857602,GSM3857603,GSM3857604,GSM3857605,GSM3857606,GSM3857607,GSM3857608,GSM3857609,GSM3857610,GSM3857611,GSM3857612,GSM3857613,GSM3857614,GSM3857615,GSM3857616,GSM3857617,GSM3857618,GSM3857619,GSM3857620,GSM3857621,GSM3857622,GSM3857623,GSM3857624,GSM3857625,GSM3857626,GSM3857627,GSM3857628,GSM3857629,GSM3857630,GSM3857631,GSM3857632,GSM3857633,GSM3857634,GSM3857635,GSM3857636,GSM3857637,GSM3857638,GSM3857639,GSM3857640,GSM3857641,GSM3857642,GSM3857643,GSM3857644,GSM3857645,GSM3857646,GSM3857647,GSM3857648,GSM3857649,GSM3857650,GSM3857651,GSM3857652,GSM3857653,GSM3857654,GSM3857655,GSM3857656,GSM3857657,GSM3857658,GSM3857659,GSM3857660,GSM3857661,GSM3857662,GSM3857663,GSM3857664,GSM3857665,GSM3857666,GSM3857667,GSM3857668,GSM3857669,GSM3857670,GSM3857671,GSM3857672,GSM3857673,GSM3857674,GSM3857675,GSM3857676,GSM3857677,GSM3857678,GSM3857679,GSM3857680,GSM3857681,GSM3857682,GSM3857683,GSM3857684,GSM3857685,GSM3857686,GSM3857687,GSM3857688,GSM3857689,GSM3857690,GSM3857691,GSM3857692,GSM3857693,GSM3857694,GSM3857695,GSM3857696,GSM3857697,GSM3857698,GSM3857699,GSM3857700,GSM3857701,GSM3857702,GSM3857703,GSM3857704,GSM3857705,GSM3857706,GSM3857707,GSM3857708,GSM3857709,GSM3857710,GSM3857711,GSM3857712,GSM3857713,GSM3857714,GSM3857715,GSM3857716,GSM3857717,GSM3857718,GSM3857719,GSM3857720,GSM3857721,GSM3857722,GSM3857723,GSM3857724,GSM3857725,GSM3857726,GSM3857727,GSM3857728,GSM3857729,GSM3857730,GSM3857731,GSM3857732,GSM3857733,GSM3857734,GSM3857735,GSM3857736,GSM3857737,GSM3857738,GSM3857739,GSM3857740,GSM3857741,GSM3857742,GSM3857743,GSM3857744,GSM3857745,GSM3857746,GSM3857747,GSM3857748,GSM3857749,GSM3857750,GSM3857751,GSM3857752,GSM3857753,GSM3857754,GSM3857755,GSM3857756,GSM3857757,GSM3857758,GSM3857759,GSM3857760,GSM3857761,GSM3857762,GSM3857763,GSM3857764,GSM3857765,GSM3857766,GSM3857767,GSM3857768,GSM3857769,GSM3857770,GSM3857771,GSM3857772,GSM3857773,GSM3857774,GSM3857775,GSM3857776,GSM3857777,GSM3857778,GSM3857779,GSM3857780,GSM3857781,GSM3857782,GSM3857783,GSM3857784,GSM3857785,GSM3857786,GSM3857787,GSM3857788,GSM3857789,GSM3857790,GSM3857791,GSM3857792,GSM3857793,GSM3857794,GSM3857795,GSM3857796,GSM3857797,GSM3857798,GSM3857799,GSM3857800,GSM3857801,GSM3857802,GSM3857803,GSM3857804,GSM3857805,GSM3857806,GSM3857807,GSM3857808,GSM3857809,GSM3857810,GSM3857811,GSM3857812,GSM3857813,GSM3857814,GSM3857815,GSM3857816,GSM3857817,GSM3857818,GSM3857819,GSM3857820,GSM3857821,GSM3857822,GSM3857823,GSM3857824,GSM3857825,GSM3857826,GSM3857827,GSM3857828,GSM3857829,GSM3857830,GSM3857831,GSM3857832,GSM3857833,GSM3857834,GSM3857835,GSM3857836,GSM3857837,GSM3857838,GSM3857839,GSM3857840,GSM3857841,GSM3857842,GSM3857843,GSM3857844,GSM3857845,GSM3857846,GSM3857847,GSM3857848,GSM3857849,GSM3857850,GSM3857851,GSM3857852,GSM3857853,GSM3857854,GSM3857855,GSM3857856,GSM3857857,GSM3857858,GSM3857859,GSM3857860,GSM3857861,GSM3857862,GSM3857863,GSM3857864,GSM3857865,GSM3857866,GSM3857867,GSM3857868,GSM3857869,GSM3857870,GSM3857871,GSM3857872,GSM3857873,GSM3857874,GSM3857875,GSM3857876,GSM3857877,GSM3857878,GSM3857879,GSM3857880,GSM3857881,GSM3857882,GSM3857883,GSM3857884,GSM3857885,GSM3857886,GSM3857887,GSM3857888,GSM3857889,GSM3857890,GSM3857891,GSM3857892,GSM3857893,GSM3857894,GSM3857895,GSM3857896,GSM3857897,GSM3857898,GSM3857899,GSM3857900,GSM3857901,GSM3857902,GSM3857903,GSM3857904,GSM3857905,GSM3857906,GSM3857907,GSM3857908,GSM3857909,GSM3857910,GSM3857911,GSM3857912,GSM3857913,GSM3857914,GSM3857915,GSM3857916,GSM3857917,GSM3857918,GSM3857919,GSM3857920,GSM3857921,GSM3857922,GSM3857923,GSM3857924,GSM3857925,GSM3857926,GSM3857927,GSM3857928,GSM3857929,GSM3857930,GSM3857931,GSM3857932,GSM3857933,GSM3857934,GSM3857935,GSM3857936,GSM3857937,GSM3857938,GSM3857939,GSM3857940,GSM3857941,GSM3857942,GSM3857943,GSM3857944,GSM3857945,GSM3857946,GSM3857947,GSM3857948,GSM3857949,GSM3857950,GSM3857951,GSM3857952,GSM3857953,GSM3857954,GSM3857955,GSM3857956,GSM3857957,GSM3857958,GSM3857959,GSM3857960,GSM3857961,GSM3857962,GSM3857963,GSM3857964,GSM3857965,GSM3857966,GSM3857967,GSM3857968,GSM3857969,GSM3857970,GSM3857971,GSM3857972,GSM3857973,GSM3857974,GSM3857975,GSM3857976,GSM3857977,GSM3857978,GSM3857979,GSM3857980,GSM3857981,GSM3857982,GSM3857983,GSM3857984,GSM3857985,GSM3857986,GSM3857987,GSM3857988,GSM3857989,GSM3857990,GSM3857991,GSM3857992,GSM3857993,GSM3857994,GSM3857995,GSM3857996,GSM3857997,GSM3857998,GSM3857999,GSM3858000,GSM3858001,GSM3858002,GSM3858003,GSM3858004,GSM3858005,GSM3858006,GSM3858007,GSM3858008,GSM3858009,GSM3858010,GSM3858011,GSM3858012,GSM3858013,GSM3858014,GSM3858015,GSM3858016,GSM3858017,GSM3858018,GSM3858019,GSM3858020,GSM3858021,GSM3858022,GSM3858023,GSM3858024,GSM3858025,GSM3858026,GSM3858027,GSM3858028,GSM3858029,GSM3858030,GSM3858031,GSM3858032,GSM3858033,GSM3858034,GSM3858035,GSM3858036,GSM3858037,GSM3858038,GSM3858039,GSM3858040,GSM3858041,GSM3858042,GSM3858043,GSM3858044,GSM3858045,GSM3858046,GSM3858047,GSM3858048,GSM3858049,GSM3858050,GSM3858051,GSM3858052,GSM3858053,GSM3858054,GSM3858055,GSM3858056,GSM3858057,GSM3858058,GSM3858059,GSM3858060,GSM3858061,GSM3858062,GSM3858063,GSM3858064,GSM3858065,GSM3858066,GSM3858067,GSM3858068,GSM3858069,GSM3858070,GSM3858071,GSM3858072,GSM3858073,GSM3858074,GSM3858075,GSM3858076,GSM3858077,GSM3858078,GSM3858079,GSM3858080,GSM3858081,GSM3858082,GSM3858083,GSM3858084,GSM3858085,GSM3858086,GSM3858087,GSM3858088,GSM3858089,GSM3858090,GSM3858091,GSM3858092,GSM3858093,GSM3858094,GSM3858095,GSM3858096,GSM3858097,GSM3858098,GSM3858099,GSM3858100,GSM3858101,GSM3858102,GSM3858103,GSM3858104,GSM3858105,GSM3858106,GSM3858107,GSM3858108,GSM3858109,GSM3858110,GSM3858111,GSM3858112,GSM3858113,GSM3858114,GSM3858115,GSM3858116,GSM3858117,GSM3858118,GSM3858119,GSM3858120,GSM3858121,GSM3858122,GSM3858123,GSM3858124,GSM3858125,GSM3858126,GSM3858127,GSM3858128,GSM3858129,GSM3858130,GSM3858131,GSM3858132,GSM3858133,GSM3858134,GSM3858135,GSM3858136,GSM3858137,GSM3858138,GSM3858139,GSM3858140,GSM3858141,GSM3858142,GSM3858143,GSM3858144,GSM3858145,GSM3858146,GSM3858147,GSM3858148,GSM3858149,GSM3858150,GSM3858151,GSM3858152,GSM3858153,GSM3858154,GSM3858155,GSM3858156,GSM3858157,GSM3858158,GSM3858159,GSM3858160,GSM3858161,GSM3858162,GSM3858163,GSM3858164,GSM3858165,GSM3858166,GSM3858167,GSM3858168,GSM3858169,GSM3858170,GSM3858171,GSM3858172,GSM3858173,GSM3858174,GSM3858175,GSM3858176,GSM3858177,GSM3858178,GSM3858179,GSM3858180,GSM3858181,GSM3858182,GSM3858183,GSM3858184,GSM3858185,GSM3858186,GSM3858187,GSM3858188,GSM3858189,GSM3858190,GSM3858191,GSM3858192,GSM3858193,GSM3858194,GSM3858195,GSM3858196,GSM3858197,GSM3858198,GSM3858199,GSM3858200,GSM3858201,GSM3858202,GSM3858203,GSM3858204,GSM3858205,GSM3858206,GSM3858207,GSM3858208,GSM3858209,GSM3858210,GSM3858211,GSM3858212,GSM3858213,GSM3858214,GSM3858215,GSM3858216,GSM3858217,GSM3858218,GSM3858219,GSM3858220,GSM3858221,GSM3858222,GSM3858223,GSM3858224,GSM3858225,GSM3858226,GSM3858227,GSM3858228,GSM3858229,GSM3858230,GSM3858231,GSM3858232,GSM3858233,GSM3858234,GSM3858235,GSM3858236,GSM3858237,GSM3858238,GSM3858239,GSM3858240,GSM3858241,GSM3858242,GSM3858243,GSM3858244,GSM3858245,GSM3858246,GSM3858247,GSM3858248,GSM3858249,GSM3858250,GSM3858251,GSM3858252,GSM3858253,GSM3858254,GSM3858255,GSM3858256,GSM3858257,GSM3858258,GSM3858259,GSM3858260,GSM3858261,GSM3858262,GSM3858263,GSM3858264,GSM3858265,GSM3858266,GSM3858267,GSM3858268,GSM3858269,GSM3858270,GSM3858271,GSM3858272,GSM3858273,GSM3858274,GSM3858275,GSM3858276,GSM3858277,GSM3858278,GSM3858279,GSM3858280,GSM3858281,GSM3858282,GSM3858283,GSM3858284,GSM3858285,GSM3858286,GSM3858287,GSM3858288,GSM3858289,GSM3858290,GSM3858291,GSM3858292,GSM3858293,GSM3858294,GSM3858295,GSM3858296,GSM3858297,GSM3858298,GSM3858299,GSM3858300,GSM3858301,GSM3858302,GSM3858303,GSM3858304,GSM3858305,GSM3858306,GSM3858307,GSM3858308,GSM3858309,GSM3858310,GSM3858311,GSM3858312,GSM3858313,GSM3858314,GSM3858315,GSM3858316,GSM3858317,GSM3858318,GSM3858319,GSM3858320,GSM3858321,GSM3858322,GSM3858323,GSM3858324,GSM3858325,GSM3858326,GSM3858327,GSM3858328,GSM3858329,GSM3858330,GSM3858331,GSM3858332,GSM3858333,GSM3858334,GSM3858335,GSM3858336,GSM3858337,GSM3858338,GSM3858339,GSM3858340,GSM3858341,GSM3858342,GSM3858343,GSM3858344,GSM3858345,GSM3858346,GSM3858347,GSM3858348,GSM3858349,GSM3858350,GSM3858351,GSM3858352,GSM3858353,GSM3858354,GSM3858355,GSM3858356,GSM3858357,GSM3858358,GSM3858359,GSM3858360,GSM3858361,GSM3858362,GSM3858363,GSM3858364,GSM3858365,GSM3858366,GSM3858367,GSM3858368,GSM3858369,GSM3858370,GSM3858371,GSM3858372,GSM3858373,GSM3858374,GSM3858375,GSM3858376,GSM3858377,GSM3858378,GSM3858379,GSM3858380,GSM3858381,GSM3858382,GSM3858383,GSM3858384,GSM3858385,GSM3858386,GSM3858387,GSM3858388,GSM3858389,GSM3858390,GSM3858391,GSM3858392,GSM3858393,GSM3858394,GSM3858395,GSM3858396,GSM3858397,GSM3858398,GSM3858399,GSM3858400,GSM3858401,GSM3858402,GSM3858403,GSM3858404,GSM3858405,GSM3858406,GSM3858407,GSM3858408,GSM3858409,GSM3858410,GSM3858411,GSM3858412,GSM3858413,GSM3858414,GSM3858415,GSM3858416,GSM3858417,GSM3858418,GSM3858419,GSM3858420,GSM3858421,GSM3858422,GSM3858423,GSM3858424,GSM3858425,GSM3858426,GSM3858427,GSM3858428,GSM3858429,GSM3858430,GSM3858431,GSM3858432,GSM3858433,GSM3858434,GSM3858435,GSM3858436,GSM3858437,GSM3858438,GSM3858439,GSM3858440,GSM3858441,GSM3858442,GSM3858443,GSM3858444,GSM3858445,GSM3858446,GSM3858447,GSM3858448,GSM3858449,GSM3858450,GSM3858451,GSM3858452,GSM3858453,GSM3858454,GSM3858455,GSM3858456,GSM3858457,GSM3858458,GSM3858459,GSM3858460,GSM3858461,GSM3858462,GSM3858463,GSM3858464,GSM3858465,GSM3858466,GSM3858467,GSM3858468,GSM3858469,GSM3858470,GSM3858471,GSM3858472,GSM3858473,GSM3858474,GSM3858475,GSM3858476,GSM3858477,GSM3858478,GSM3858479,GSM3858480,GSM3858481,GSM3858482,GSM3858483,GSM3858484,GSM3858485,GSM3858486,GSM3858487,GSM3858488,GSM3858489,GSM3858490,GSM3858491,GSM3858492,GSM3858493,GSM3858494,GSM3858495,GSM3858496,GSM3858497,GSM3858498,GSM3858499,GSM3858500,GSM3858501,GSM3858502,GSM3858503,GSM3858504,GSM3858505,GSM3858506,GSM3858507,GSM3858508,GSM3858509,GSM3858510,GSM3858511,GSM3858512,GSM3858513,GSM3858514,GSM3858515,GSM3858516,GSM3858517,GSM3858518,GSM3858519,GSM3858520,GSM3858521,GSM3858522,GSM3858523,GSM3858524,GSM3858525,GSM3858526,GSM3858527,GSM3858528,GSM3858529,GSM3858530,GSM3858531,GSM3858532,GSM3858533,GSM3858534,GSM3858535,GSM3858536,GSM3858537,GSM3858538,GSM3858539,GSM3858540,GSM3858541,GSM3858542,GSM3858543,GSM3858544,GSM3858545,GSM3858546,GSM3858547,GSM3858548,GSM3858549,GSM3858550,GSM3858551,GSM3858552,GSM3858553,GSM3858554,GSM3858555,GSM3858556,GSM3858557,GSM3858558,GSM3858559,GSM3858560,GSM3858561,GSM3858562,GSM3858563,GSM3858564,GSM3858565,GSM3858566,GSM3858567,GSM3858568,GSM3858569,GSM3858570,GSM3858571,GSM3858572,GSM3858573,GSM3858574,GSM3858575,GSM3858576,GSM3858577,GSM3858578,GSM3858579,GSM3858580,GSM3858581,GSM3858582,GSM3858583,GSM3858584,GSM3858585,GSM3858586,GSM3858587,GSM3858588,GSM3858589,GSM3858590,GSM3858591,GSM3858592,GSM3858593,GSM3858594,GSM3858595,GSM3858596,GSM3858597,GSM3858598,GSM3858599,GSM3858600,GSM3858601,GSM3858602,GSM3858603,GSM3858604,GSM3858605,GSM3858606,GSM3858607,GSM3858608,GSM3858609,GSM3858610,GSM3858611,GSM3858612,GSM3858613,GSM3858614,GSM3858615,GSM3858616,GSM3858617,GSM3858618,GSM3858619,GSM3858620,GSM3858621,GSM3858622,GSM3858623,GSM3858624,GSM3858625,GSM3858626,GSM3858627,GSM3858628,GSM3858629,GSM3858630,GSM3858631,GSM3858632,GSM3858633,GSM3858634,GSM3858635,GSM3858636,GSM3858637,GSM3858638,GSM3858639,GSM3858640,GSM3858641,GSM3858642,GSM3858643,GSM3858644,GSM3858645,GSM3858646,GSM3858647,GSM3858648,GSM3858649,GSM3858650,GSM3858651,GSM3858652,GSM3858653,GSM3858654,GSM3858655,GSM3858656,GSM3858657,GSM3858658,GSM3858659,GSM3858660,GSM3858661,GSM3858662,GSM3858663,GSM3858664,GSM3858665,GSM3858666,GSM3858667,GSM3858668,GSM3858669,GSM3858670,GSM3858671,GSM3858672,GSM3858673,GSM3858674,GSM3858675,GSM3858676,GSM3858677,GSM3858678,GSM3858679,GSM3858680,GSM3858681,GSM3858682,GSM3858683,GSM3858684,GSM3858685,GSM3858686,GSM3858687,GSM3858688,GSM3858689,GSM3858690,GSM3858691,GSM3858692,GSM3858693,GSM3858694,GSM3858695,GSM3858696,GSM3858697,GSM3858698,GSM3858699,GSM3858700,GSM3858701,GSM3858702,GSM3858703,GSM3858704,GSM3858705,GSM3858706,GSM3858707,GSM3858708,GSM3858709,GSM3858710,GSM3858711,GSM3858712,GSM3858713,GSM3858714,GSM3858715,GSM3858716,GSM3858717,GSM3858718,GSM3858719,GSM3858720,GSM3858721,GSM3858722,GSM3858723,GSM3858724,GSM3858725,GSM3858726,GSM3858727,GSM3858728,GSM3858729,GSM3858730,GSM3858731,GSM3858732,GSM3858733,GSM3858734,GSM3858735,GSM3858736,GSM3858737,GSM3858738,GSM3858739,GSM3858740,GSM3858741,GSM3858742,GSM3858743,GSM3858744,GSM3858745,GSM3858746,GSM3858747,GSM3858748,GSM3858749,GSM3858750,GSM3858751,GSM3858752,GSM3858753,GSM3858754,GSM3858755,GSM3858756,GSM3858757,GSM3858758,GSM3858759,GSM3858760,GSM3858761,GSM3858762,GSM3858763,GSM3858764,GSM3858765,GSM3858766,GSM3858767,GSM3858768,GSM3858769,GSM3858770,GSM3858771,GSM3858772,GSM3858773,GSM3858774,GSM3858775,GSM3858776,GSM3858777,GSM3858778,GSM3858779,GSM3858780,GSM3858781,GSM3858782,GSM3858783,GSM3858784,GSM3858785,GSM3858786,GSM3858787,GSM3858788,GSM3858789,GSM3858790,GSM3858791,GSM3858792,GSM3858793,GSM3858794,GSM3858795,GSM3858796,GSM3858797,GSM3858798,GSM3858799,GSM3858800,GSM3858801,GSM3858802,GSM3858803,GSM3858804,GSM3858805,GSM3858806,GSM3858807,GSM3858808,GSM3858809,GSM3858810,GSM3858811,GSM3858812,GSM3858813,GSM3858814,GSM3858815,GSM3858816,GSM3858817,GSM3858818,GSM3858819,GSM3858820,GSM3858821,GSM3858822,GSM3858823,GSM3858824,GSM3858825,GSM3858826,GSM3858827,GSM3858828,GSM3858829,GSM3858830,GSM3858831,GSM3858832,GSM3858833,GSM3858834,GSM3858835,GSM3858836,GSM3858837,GSM3858838,GSM3858839,GSM3858840,GSM3858841,GSM3858842,GSM3858843,GSM3858844,GSM3858845,GSM3858846,GSM3858847,GSM3858848,GSM3858849,GSM3858850,GSM3858851,GSM3858852,GSM3858853,GSM3858854,GSM3858855,GSM3858856,GSM3858857,GSM3858858,GSM3858859,GSM3858860,GSM3858861,GSM3858862,GSM3858863,GSM3858864,GSM3858865,GSM3858866,GSM3858867,GSM3858868,GSM3858869,GSM3858870,GSM3858871,GSM3858872,GSM3858873,GSM3858874,GSM3858875,GSM3858876,GSM3858877,GSM3858878,GSM3858879,GSM3858880,GSM3858881,GSM3858882,GSM3858883,GSM3858884,GSM3858885,GSM3858886,GSM3858887,GSM3858888,GSM3858889,GSM3858890,GSM3858891,GSM3858892,GSM3858893,GSM3858894,GSM3858895,GSM3858896,GSM3858897,GSM3858898,GSM3858899,GSM3858900,GSM3858901,GSM3858902,GSM3858903,GSM3858904,GSM3858905,GSM3858906,GSM3858907,GSM3858908,GSM3858909,GSM3858910,GSM3858911,GSM3858912,GSM3858913,GSM3858914,GSM3858915,GSM3858916,GSM3858917,GSM3858918,GSM3858919,GSM3858920,GSM3858921,GSM3858922,GSM3858923,GSM3858924,GSM3858925,GSM3858926,GSM3858927,GSM3858928,GSM3858929,GSM3858930,GSM3858931,GSM3858932,GSM3858933,GSM3858934,GSM3858935,GSM3858936,GSM3858937,GSM3858938,GSM3858939,GSM3858940,GSM3858941,GSM3858942,GSM3858943,GSM3858944,GSM3858945,GSM3858946,GSM3858947,GSM3858948,GSM3858949,GSM3858950,GSM3858951,GSM3858952,GSM3858953,GSM3858954,GSM3858955,GSM3858956,GSM3858957,GSM3858958,GSM3858959,GSM3858960,GSM3858961,GSM3858962,GSM3858963,GSM3858964,GSM3858965,GSM3858966,GSM3858967,GSM3858968,GSM3858969,GSM3858970,GSM3858971,GSM3858972,GSM3858973,GSM3858974,GSM3858975,GSM3858976,GSM3858977,GSM3858978,GSM3858979,GSM3858980,GSM3858981,GSM3858982,GSM3858983,GSM3858984,GSM3858985,GSM3858986,GSM3858987,GSM3858988,GSM3858989,GSM3858990,GSM3858991,GSM3858992,GSM3858993,GSM3858994,GSM3858995,GSM3858996,GSM3858997,GSM3858998,GSM3858999,GSM3859000,GSM3859001,GSM3859002,GSM3859003,GSM3859004,GSM3859005,GSM3859006,GSM3859007,GSM3859008,GSM3859009,GSM3859010,GSM3859011,GSM3859012,GSM3859013,GSM3859014,GSM3859015,GSM3859016,GSM3859017,GSM3859018,GSM3859019,GSM3859020,GSM3859021,GSM3859022,GSM3859023,GSM3859024,GSM3859025,GSM3859026,GSM3859027,GSM3859028,GSM3859029,GSM3859030,GSM3859031,GSM3859032,GSM3859033,GSM3859034,GSM3859035,GSM3859036,GSM3859037,GSM3859038,GSM3859039,GSM3859040,GSM3859041,GSM3859042,GSM3859043,GSM3859044,GSM3859045,GSM3859046,GSM3859047,GSM3859048,GSM3859049,GSM3859050,GSM3859051,GSM3859052,GSM3859053,GSM3859054,GSM3859055,GSM3859056,GSM3859057,GSM3859058,GSM3859059,GSM3859060,GSM3859061,GSM3859062,GSM3859063,GSM3859064,GSM3859065,GSM3859066,GSM3859067,GSM3859068,GSM3859069,GSM3859070,GSM3859071,GSM3859072,GSM3859073,GSM3859074,GSM3859075,GSM3859076,GSM3859077,GSM3859078,GSM3859079,GSM3859080,GSM3859081,GSM3859082,GSM3859083,GSM3859084,GSM3859085,GSM3859086,GSM3859087,GSM3859088,GSM3859089,GSM3859090,GSM3859091,GSM3859092,GSM3859093,GSM3859094,GSM3859095,GSM3859096,GSM3859097,GSM3859098,GSM3859099,GSM3859100,GSM3859101,GSM3859102,GSM3859103,GSM3859104,GSM3859105,GSM3859106,GSM3859107,GSM3859108,GSM3859109,GSM3859110,GSM3859111,GSM3859112,GSM3859113,GSM3859114,GSM3859115,GSM3859116,GSM3859117,GSM3859118,GSM3859119,GSM3859120,GSM3859121,GSM3859122,GSM3859123,GSM3859124,GSM3859125,GSM3859126,GSM3859127,GSM3859128,GSM3859129,GSM3859130,GSM3859131,GSM3859132,GSM3859133,GSM3859134,GSM3859135,GSM3859136,GSM3859137,GSM3859138,GSM3859139,GSM3859140,GSM3859141,GSM3859142,GSM3859143,GSM3859144,GSM3859145,GSM3859146,GSM3859147,GSM3859148,GSM3859149,GSM3859150,GSM3859151,GSM3859152,GSM3859153,GSM3859154,GSM3859155,GSM3859156,GSM3859157,GSM3859158,GSM3859159,GSM3859160,GSM3859161,GSM3859162,GSM3859163,GSM3859164,GSM3859165,GSM3859166,GSM3859167,GSM3859168,GSM3859169,GSM3859170,GSM3859171,GSM3859172,GSM3859173,GSM3859174,GSM3859175,GSM3859176,GSM3859177,GSM3859178,GSM3859179,GSM3859180,GSM3859181,GSM3859182,GSM3859183,GSM3859184,GSM3859185,GSM3859186,GSM3859187,GSM3859188,GSM3859189,GSM3859190,GSM3859191,GSM3859192,GSM3859193,GSM3859194,GSM3859195,GSM3859196,GSM3859197,GSM3859198,GSM3859199,GSM3859200,GSM3859201,GSM3859202,GSM3859203,GSM3859204,GSM3859205,GSM3859206,GSM3859207,GSM3859208,GSM3859209,GSM3859210,GSM3859211,GSM3859212,GSM3859213,GSM3859214,GSM3859215,GSM3859216,GSM3859217,GSM3859218,GSM3859219,GSM3859220,GSM3859221,GSM3859222,GSM3859223,GSM3859224,GSM3859225,GSM3859226,GSM3859227,GSM3859228,GSM3859229,GSM3859230,GSM3859231,GSM3859232,GSM3859233,GSM3859234,GSM3859235,GSM3859236,GSM3859237,GSM3859238,GSM3859239,GSM3859240,GSM3859241,GSM3859242,GSM3859243,GSM3859244,GSM3859245,GSM3859246,GSM3859247,GSM3859248,GSM3859249,GSM3859250,GSM3859251,GSM3859252,GSM3859253,GSM3859254,GSM3859255,GSM3859256,GSM3859257,GSM3859258,GSM3859259,GSM3859260,GSM3859261,GSM3859262,GSM3859263,GSM3859264,GSM3859265,GSM3859266,GSM3859267,GSM3859268,GSM3859269,GSM3859270,GSM3859271,GSM3859272,GSM3859273,GSM3859274,GSM3859275,GSM3859276,GSM3859277,GSM3859278,GSM3859279,GSM3859280,GSM3859281,GSM3859282,GSM3859283,GSM3859284,GSM3859285,GSM3859286,GSM3859287,GSM3859288,GSM3859289,GSM3859290,GSM3859291,GSM3859292,GSM3859293,GSM3859294,GSM3859295,GSM3859296,GSM3859297,GSM3859298,GSM3859299,GSM3859300,GSM3859301,GSM3859302,GSM3859303,GSM3859304,GSM3859305,GSM3859306,GSM3859307,GSM3859308,GSM3859309,GSM3859310,GSM3859311,GSM3859312,GSM3859313,GSM3859314,GSM3859315,GSM3859316,GSM3859317,GSM3859318,GSM3859319,GSM3859320,GSM3859321,GSM3859322,GSM3859323,GSM3859324,GSM3859325,GSM3859326,GSM3859327,GSM3859328,GSM3859329,GSM3859330,GSM3859331,GSM3859332,GSM3859333,GSM3859334,GSM3859335,GSM3859336,GSM3859337,GSM3859338,GSM3859339,GSM3859340,GSM3859341,GSM3859342,GSM3859343,GSM3859344,GSM3859345,GSM3859346,GSM3859347,GSM3859348,GSM3859349,GSM3859350,GSM3859351,GSM3859352,GSM3859353,GSM3859354,GSM3859355,GSM3859356,GSM3859357,GSM3859358,GSM3859359,GSM3859360,GSM3859361,GSM3859362,GSM3859363,GSM3859364,GSM3859365,GSM3859366,GSM3859367,GSM3859368,GSM3859369,GSM3859370,GSM3859371,GSM3859372,GSM3859373,GSM3859374,GSM3859375,GSM3859376,GSM3859377,GSM3859378,GSM3859379,GSM3859380,GSM3859381,GSM3859382,GSM3859383,GSM3859384,GSM3859385,GSM3859386,GSM3859387,GSM3859388,GSM3859389,GSM3859390,GSM3859391,GSM3859392,GSM3859393,GSM3859394,GSM3859395,GSM3859396,GSM3859397,GSM3859398,GSM3859399,GSM3859400,GSM3859401,GSM3859402,GSM3859403,GSM3859404,GSM3859405,GSM3859406,GSM3859407,GSM3859408,GSM3859409,GSM3859410,GSM3859411,GSM3859412,GSM3859413,GSM3859414,GSM3859415,GSM3859416,GSM3859417,GSM3859418,GSM3859419,GSM3859420,GSM3859421,GSM3859422,GSM3859423,GSM3859424,GSM3859425,GSM3859426,GSM3859427,GSM3859428,GSM3859429,GSM3859430,GSM3859431,GSM3859432,GSM3859433,GSM3859434,GSM3859435,GSM3859436,GSM3859437,GSM3859438,GSM3859439,GSM3859440,GSM3859441,GSM3859442,GSM3859443,GSM3859444,GSM3859445,GSM3859446,GSM3859447,GSM3859448,GSM3859449,GSM3859450,GSM3859451,GSM3859452,GSM3859453,GSM3859454,GSM3859455,GSM3859456,GSM3859457,GSM3859458,GSM3859459,GSM3859460,GSM3859461,GSM3859462,GSM3859463,GSM3859464,GSM3859465,GSM3859466,GSM3859467,GSM3859468,GSM3859469,GSM3859470,GSM3859471,GSM3859472,GSM3859473,GSM3859474,GSM3859475,GSM3859476,GSM3859477,GSM3859478,GSM3859479,GSM3859480,GSM3859481,GSM3859482,GSM3859483,GSM3859484,GSM3859485,GSM3859486,GSM3859487,GSM3859488,GSM3859489,GSM3859490,GSM3859491,GSM3859492,GSM3859493,GSM3859494,GSM3859495,GSM3859496,GSM3859497,GSM3859498,GSM3859499,GSM3859500,GSM3859501,GSM3859502,GSM3859503,GSM3859504,GSM3859505,GSM3859506,GSM3859507,GSM3859508,GSM3859509,GSM3859510,GSM3859511,GSM3859512,GSM3859513,GSM3859514,GSM3859515,GSM3859516,GSM3859517,GSM3859518,GSM3859519,GSM3859520,GSM3859521,GSM3859522,GSM3859523,GSM3859524,GSM3859525,GSM3859526,GSM3859527,GSM3859528,GSM3859529,GSM3859530,GSM3859531,GSM3859532,GSM3859533,GSM3859534,GSM3859535,GSM3859536,GSM3859537,GSM3859538,GSM3859539,GSM3859540,GSM3859541,GSM3859542,GSM3859543,GSM3859544,GSM3859545,GSM3859546,GSM3859547,GSM3859548,GSM3859549,GSM3859550,GSM3859551,GSM3859552,GSM3859553,GSM3859554,GSM3859555,GSM3859556,GSM3859557,GSM3859558,GSM3859559,GSM3859560,GSM3859561,GSM3859562,GSM3859563,GSM3859564,GSM3859565,GSM3859566,GSM3859567,GSM3859568,GSM3859569,GSM3859570,GSM3859571,GSM3859572,GSM3859573,GSM3859574,GSM3859575,GSM3859576,GSM3859577,GSM3859578,GSM3859579,GSM3859580,GSM3859581,GSM3859582,GSM3859583,GSM3859584,GSM3859585,GSM3859586,GSM3859587,GSM3859588,GSM3859589,GSM3859590,GSM3859591,GSM3859592,GSM3859593,GSM3859594,GSM3859595,GSM3859596,GSM3859597,GSM3859598,GSM3859599,GSM3859600,GSM3859601,GSM3859602,GSM3859603,GSM3859604,GSM3859605,GSM3859606,GSM3859607,GSM3859608,GSM3859609,GSM3859610,GSM3859611,GSM3859612,GSM3859613,GSM3859614,GSM3859615,GSM3859616,GSM3859617,GSM3859618,GSM3859619,GSM3859620,GSM3859621,GSM3859622,GSM3859623,GSM3859624,GSM3859625,GSM3859626,GSM3859627,GSM3859628,GSM3859629,GSM3859630,GSM3859631,GSM3859632,GSM3859633,GSM3859634,GSM3859635,GSM3859636,GSM3859637,GSM3859638,GSM3859639,GSM3859640,GSM3859641,GSM3859642,GSM3859643,GSM3859644,GSM3859645,GSM3859646,GSM3859647,GSM3859648,GSM3859649,GSM3859650,GSM3859651,GSM3859652,GSM3859653,GSM3859654,GSM3859655,GSM3859656,GSM3859657,GSM3859658,GSM3859659,GSM3859660,GSM3859661,GSM3859662,GSM3859663,GSM3859664,GSM3859665,GSM3859666,GSM3859667,GSM3859668,GSM3859669,GSM3859670,GSM3859671,GSM3859672,GSM3859673,GSM3859674,GSM3859675,GSM3859676,GSM3859677,GSM3859678,GSM3859679,GSM3859680,GSM3859681,GSM3859682,GSM3859683,GSM3859684,GSM3859685,GSM3859686,GSM3859687,GSM3859688,GSM3859689,GSM3859690,GSM3859691,GSM3859692,GSM3859693,GSM3859694,GSM3859695,GSM3859696,GSM3859697,GSM3859698,GSM3859699,GSM3859700,GSM3859701,GSM3859702,GSM3859703,GSM3859704,GSM3859705,GSM3859706,GSM3859707,GSM3859708,GSM3859709,GSM3859710,GSM3859711,GSM3859712,GSM3859713,GSM3859714,GSM3859715,GSM3859716,GSM3859717,GSM3859718,GSM3859719,GSM3859720,GSM3859721,GSM3859722,GSM3859723,GSM3859724,GSM3859725,GSM3859726,GSM3859727,GSM3859728,GSM3859729,GSM3859730,GSM3859731,GSM3859732,GSM3859733,GSM3859734,GSM3859735,GSM3859736,GSM3859737,GSM3859738,GSM3859739,GSM3859740,GSM3859741,GSM3859742,GSM3859743,GSM3859744,GSM3859745,GSM3859746,GSM3859747,GSM3859748,GSM3859749,GSM3859750,GSM3859751,GSM3859752,GSM3859753,GSM3859754,GSM3859755,GSM3859756,GSM3859757,GSM3859758,GSM3859759,GSM3859760,GSM3859761,GSM3859762,GSM3859763,GSM3859764,GSM3859765,GSM3859766,GSM3859767,GSM3859768,GSM3859769,GSM3859770,GSM3859771,GSM3859772,GSM3859773,GSM3859774,GSM3859775,GSM3859776,GSM3859777,GSM3859778,GSM3859779,GSM3859780,GSM3859781,GSM3859782,GSM3859783,GSM3859784,GSM3859785,GSM3859786,GSM3859787,GSM3859788,GSM3859789,GSM3859790,GSM3859791,GSM3859792,GSM3859793,GSM3859794,GSM3859795,GSM3859796,GSM3859797,GSM3859798,GSM3859799,GSM3859800,GSM3859801,GSM3859802,GSM3859803,GSM3859804,GSM3859805,GSM3859806,GSM3859807,GSM3859808,GSM3859809,GSM3859810,GSM3859811,GSM3859812,GSM3859813,GSM3859814,GSM3859815,GSM3859816,GSM3859817,GSM3859818,GSM3859819,GSM3859820,GSM3859821,GSM3859822,GSM3859823,GSM3859824,GSM3859825,GSM3859826,GSM3859827,GSM3859828,GSM3859829,GSM3859830,GSM3859831,GSM3859832,GSM3859833,GSM3859834,GSM3859835,GSM3859836,GSM3859837,GSM3859838,GSM3859839,GSM3859840,GSM3859841,GSM3859842,GSM3859843,GSM3859844,GSM3859845,GSM3859846,GSM3859847,GSM3859848,GSM3859849,GSM3859850,GSM3859851,GSM3859852,GSM3859853,GSM3859854,GSM3859855,GSM3859856,GSM3859857,GSM3859858,GSM3859859,GSM3859860,GSM3859861,GSM3859862,GSM3859863,GSM3859864,GSM3859865,GSM3859866,GSM3859867,GSM3859868,GSM3859869,GSM3859870,GSM3859871,GSM3859872,GSM3859873,GSM3859874,GSM3859875,GSM3859876,GSM3859877,GSM3859878,GSM3859879,GSM3859880,GSM3859881,GSM3859882,GSM3859883,GSM3859884,GSM3859885,GSM3859886,GSM3859887,GSM3859888,GSM3859889,GSM3859890,GSM3859891,GSM3859892,GSM3859893,GSM3859894,GSM3859895,GSM3859896,GSM3859897,GSM3859898,GSM3859899,GSM3859900,GSM3859901,GSM3859902,GSM3859903,GSM3859904,GSM3859905,GSM3859906,GSM3859907,GSM3859908,GSM3859909,GSM3859910,GSM3859911,GSM3859912,GSM3859913,GSM3859914,GSM3859915,GSM3859916,GSM3859917,GSM3859918,GSM3859919,GSM3859920,GSM3859921,GSM3859922,GSM3859923,GSM3859924,GSM3859925,GSM3859926,GSM3859927,GSM3859928,GSM3859929,GSM3859930,GSM3859931,GSM3859932,GSM3859933,GSM3859934,GSM3859935,GSM3859936,GSM3859937,GSM3859938,GSM3859939,GSM3859940,GSM3859941,GSM3859942,GSM3859943,GSM3859944,GSM3859945,GSM3859946,GSM3859947,GSM3859948,GSM3859949,GSM3859950,GSM3859951,GSM3859952,GSM3859953,GSM3859954,GSM3859955,GSM3859956,GSM3859957,GSM3859958,GSM3859959,GSM3859960,GSM3859961,GSM3859962,GSM3859963,GSM3859964,GSM3859965,GSM3859966,GSM3859967,GSM3859968,GSM3859969,GSM3859970,GSM3859971,GSM3859972,GSM3859973,GSM3859974,GSM3859975,GSM3859976,GSM3859977,GSM3859978,GSM3859979,GSM3859980,GSM3859981,GSM3859982,GSM3859983,GSM3859984,GSM3859985,GSM3859986,GSM3859987,GSM3859988,GSM3859989,GSM3859990,GSM3859991,GSM3859992,GSM3859993,GSM3859994,GSM3859995,GSM3859996,GSM3859997,GSM3859998,GSM3859999,GSM3860000,GSM3860001,GSM3860002,GSM3860003,GSM3860004,GSM3860005,GSM3860006,GSM3860007,GSM3860008,GSM3860009,GSM3860010,GSM3860011,GSM3860012,GSM3860013,GSM3860014,GSM3860015,GSM3860016,GSM3860017,GSM3860018,GSM3860019,GSM3860020,GSM3860021,GSM3860022,GSM3860023,GSM3860024,GSM3860025,GSM3860026,GSM3860027,GSM3860028,GSM3860029,GSM3860030,GSM3860031,GSM3860032,GSM3860033,GSM3860034,GSM3860035,GSM3860036,GSM3860037,GSM3860038,GSM3860039,GSM3860040,GSM3860041,GSM3860042,GSM3860043,GSM3860044,GSM3860045,GSM3860046,GSM3860047,GSM3860048,GSM3860049,GSM3860050,GSM3860051,GSM3860052,GSM3860053,GSM3860054,GSM3860055,GSM3860056,GSM3860057,GSM3860058,GSM3860059,GSM3860060,GSM3860061,GSM3860062,GSM3860063,GSM3860064,GSM3860065,GSM3860066,GSM3860067,GSM3860068,GSM3860069,GSM3860070,GSM3860071,GSM3860072,GSM3860073,GSM3860074,GSM3860075,GSM3860076,GSM3860077,GSM3860078,GSM3860079,GSM3860080,GSM3860081,GSM3860082,GSM3860083,GSM3860084,GSM3860085,GSM3860086,GSM3860087,GSM3860088,GSM3860089,GSM3860090,GSM3860091,GSM3860092,GSM3860093,GSM3860094,GSM3860095,GSM3860096,GSM3860097,GSM3860098,GSM3860099,GSM3860100,GSM3860101,GSM3860102,GSM3860103,GSM3860104,GSM3860105,GSM3860106,GSM3860107,GSM3860108,GSM3860109,GSM3860110,GSM3860111,GSM3860112,GSM3860113,GSM3860114,GSM3860115,GSM3860116,GSM3860117,GSM3860118,GSM3860119,GSM3860120,GSM3860121,GSM3860122,GSM3860123,GSM3860124,GSM3860125,GSM3860126,GSM3860127,GSM3860128,GSM3860129,GSM3860130,GSM3860131,GSM3860132,GSM3860133,GSM3860134,GSM3860135,GSM3860136,GSM3860137,GSM3860138,GSM3860139,GSM3860140,GSM3860141,GSM3860142,GSM3860143,GSM3860144,GSM3860145,GSM3860146,GSM3860147,GSM3860148,GSM3860149,GSM3860150,GSM3860151,GSM3860152,GSM3860153,GSM3860154,GSM3860155,GSM3860156,GSM3860157,GSM3860158,GSM3860159,GSM3860160,GSM3860161,GSM3860162,GSM3860163,GSM3860164,GSM3860165,GSM3860166,GSM3860167,GSM3860168,GSM3860169,GSM3860170,GSM3860171,GSM3860172,GSM3860173,GSM3860174,GSM3860175,GSM3860176,GSM3860177,GSM3860178,GSM3860179,GSM3860180,GSM3860181,GSM3860182,GSM3860183,GSM3860184,GSM3860185,GSM3860186,GSM3860187,GSM3860188,GSM3860189,GSM3860190,GSM3860191,GSM3860192,GSM3860193,GSM3860194,GSM3860195,GSM3860196,GSM3860197,GSM3860198,GSM3860199,GSM3860200,GSM3860201,GSM3860202,GSM3860203,GSM3860204,GSM3860205,GSM3860206,GSM3860207,GSM3860208,GSM3860209,GSM3860210,GSM3860211,GSM3860212,GSM3860213,GSM3860214,GSM3860215,GSM3860216,GSM3860217,GSM3860218,GSM3860219,GSM3860220,GSM3860221,GSM3860222,GSM3860223,GSM3860224,GSM3860225,GSM3860226,GSM3860227,GSM3860228,GSM3860229,GSM3860230,GSM3860231,GSM3860232,GSM3860233,GSM3860234,GSM3860235,GSM3860236,GSM3860237,GSM3860238,GSM3860239,GSM3860240,GSM3860241,GSM3860242,GSM3860243,GSM3860244,GSM3860245,GSM3860246,GSM3860247,GSM3860248,GSM3860249,GSM3860250,GSM3860251,GSM3860252,GSM3860253,GSM3860254,GSM3860255,GSM3860256,GSM3860257,GSM3860258,GSM3860259,GSM3860260,GSM3860261,GSM3860262,GSM3860263,GSM3860264,GSM3860265,GSM3860266,GSM3860267,GSM3860268,GSM3860269,GSM3860270,GSM3860271,GSM3860272,GSM3860273,GSM3860274,GSM3860275,GSM3860276,GSM3860277,GSM3860278,GSM3860279,GSM3860280,GSM3860281,GSM3860282,GSM3860283,GSM3860284,GSM3860285,GSM3860286,GSM3860287,GSM3860288,GSM3860289,GSM3860290,GSM3860291,GSM3860292,GSM3860293,GSM3860294,GSM3860295,GSM3860296,GSM3860297,GSM3860298,GSM3860299,GSM3860300,GSM3860301,GSM3860302,GSM3860303,GSM3860304,GSM3860305,GSM3860306,GSM3860307,GSM3860308,GSM3860309,GSM3860310,GSM3860311,GSM3860312,GSM3860313,GSM3860314,GSM3860315,GSM3860316,GSM3860317,GSM3860318,GSM3860319,GSM3860320,GSM3860321,GSM3860322,GSM3860323,GSM3860324,GSM3860325,GSM3860326,GSM3860327,GSM3860328,GSM3860329,GSM3860330,GSM3860331,GSM3860332,GSM3860333,GSM3860334,GSM3860335,GSM3860336,GSM3860337,GSM3860338,GSM3860339,GSM3860340,GSM3860341,GSM3860342,GSM3860343,GSM3860344,GSM3860345,GSM3860346,GSM3860347,GSM3860348,GSM3860349,GSM3860350,GSM3860351,GSM3860352,GSM3860353,GSM3860354,GSM3860355,GSM3860356,GSM3860357,GSM3860358,GSM3860359,GSM3860360,GSM3860361,GSM3860362,GSM3860363,GSM3860364,GSM3860365,GSM3860366,GSM3860367,GSM3860368,GSM3860369,GSM3860370,GSM3860371,GSM3860372,GSM3860373,GSM3860374
2
+ Ovarian_Cancer,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
3
+ Age,45.0,65.0,55.0,55.0,65.0,65.0,75.0,75.0,45.0,55.0,55.0,75.0,55.0,45.0,55.0,75.0,45.0,55.0,55.0,65.0,45.0,45.0,75.0,65.0,45.0,45.0,55.0,45.0,45.0,45.0,55.0,75.0,75.0,75.0,45.0,45.0,45.0,55.0,55.0,75.0,45.0,65.0,45.0,65.0,45.0,75.0,45.0,65.0,65.0,75.0,55.0,75.0,75.0,45.0,65.0,65.0,75.0,65.0,75.0,45.0,45.0,75.0,45.0,65.0,65.0,65.0,65.0,55.0,75.0,55.0,45.0,75.0,75.0,75.0,55.0,55.0,45.0,55.0,75.0,65.0,55.0,55.0,55.0,55.0,75.0,55.0,75.0,65.0,45.0,65.0,55.0,45.0,45.0,65.0,75.0,75.0,55.0,75.0,45.0,45.0,65.0,65.0,75.0,65.0,45.0,45.0,75.0,75.0,45.0,65.0,75.0,65.0,45.0,45.0,75.0,65.0,75.0,55.0,75.0,75.0,45.0,65.0,75.0,75.0,65.0,45.0,55.0,75.0,45.0,75.0,55.0,55.0,45.0,55.0,45.0,75.0,55.0,75.0,65.0,55.0,45.0,75.0,45.0,75.0,45.0,55.0,75.0,55.0,55.0,45.0,75.0,65.0,65.0,65.0,45.0,75.0,65.0,65.0,75.0,65.0,75.0,75.0,45.0,45.0,75.0,65.0,65.0,55.0,65.0,65.0,65.0,75.0,75.0,45.0,75.0,65.0,45.0,75.0,65.0,45.0,45.0,75.0,55.0,65.0,75.0,75.0,65.0,55.0,55.0,45.0,75.0,75.0,65.0,65.0,65.0,75.0,65.0,65.0,55.0,65.0,65.0,55.0,55.0,55.0,75.0,75.0,75.0,55.0,45.0,65.0,45.0,75.0,55.0,75.0,65.0,55.0,45.0,45.0,45.0,75.0,65.0,75.0,45.0,65.0,45.0,65.0,55.0,55.0,75.0,45.0,55.0,45.0,75.0,45.0,65.0,55.0,65.0,65.0,75.0,75.0,55.0,55.0,75.0,55.0,45.0,75.0,75.0,55.0,55.0,55.0,65.0,45.0,45.0,55.0,75.0,65.0,55.0,75.0,45.0,65.0,75.0,45.0,65.0,45.0,45.0,75.0,55.0,65.0,75.0,55.0,75.0,65.0,55.0,65.0,65.0,45.0,55.0,45.0,75.0,75.0,65.0,55.0,75.0,75.0,65.0,75.0,55.0,55.0,75.0,75.0,55.0,75.0,45.0,75.0,65.0,45.0,75.0,65.0,75.0,55.0,65.0,65.0,55.0,45.0,75.0,55.0,45.0,65.0,45.0,55.0,45.0,75.0,65.0,55.0,65.0,45.0,65.0,45.0,55.0,65.0,45.0,65.0,75.0,45.0,75.0,75.0,45.0,45.0,65.0,45.0,45.0,75.0,55.0,65.0,65.0,75.0,45.0,75.0,65.0,65.0,45.0,75.0,45.0,65.0,75.0,55.0,45.0,65.0,65.0,65.0,55.0,75.0,55.0,45.0,75.0,75.0,55.0,65.0,55.0,75.0,45.0,55.0,75.0,55.0,65.0,75.0,65.0,45.0,75.0,55.0,75.0,45.0,65.0,55.0,55.0,45.0,65.0,55.0,65.0,55.0,55.0,65.0,75.0,55.0,65.0,75.0,65.0,75.0,55.0,45.0,55.0,75.0,65.0,65.0,75.0,75.0,65.0,65.0,75.0,55.0,65.0,75.0,65.0,55.0,65.0,65.0,75.0,55.0,55.0,65.0,75.0,75.0,75.0,45.0,45.0,65.0,75.0,55.0,55.0,65.0,55.0,65.0,55.0,45.0,75.0,65.0,65.0,75.0,55.0,45.0,65.0,65.0,65.0,45.0,75.0,55.0,45.0,45.0,65.0,75.0,45.0,55.0,45.0,65.0,45.0,45.0,65.0,55.0,55.0,75.0,45.0,45.0,65.0,55.0,45.0,45.0,65.0,45.0,65.0,65.0,75.0,75.0,55.0,75.0,65.0,45.0,75.0,75.0,45.0,75.0,75.0,45.0,45.0,55.0,45.0,65.0,55.0,75.0,45.0,75.0,75.0,75.0,75.0,45.0,45.0,45.0,65.0,45.0,65.0,45.0,55.0,45.0,65.0,45.0,65.0,75.0,45.0,75.0,65.0,45.0,65.0,75.0,75.0,75.0,55.0,55.0,55.0,45.0,65.0,75.0,55.0,75.0,65.0,75.0,75.0,45.0,55.0,55.0,45.0,75.0,65.0,45.0,45.0,75.0,45.0,65.0,45.0,65.0,75.0,45.0,75.0,65.0,75.0,65.0,45.0,65.0,55.0,75.0,55.0,45.0,45.0,65.0,65.0,55.0,45.0,45.0,45.0,55.0,65.0,45.0,55.0,75.0,45.0,45.0,55.0,75.0,45.0,75.0,75.0,65.0,55.0,55.0,75.0,45.0,65.0,65.0,75.0,45.0,65.0,45.0,75.0,75.0,75.0,65.0,65.0,75.0,55.0,45.0,65.0,75.0,65.0,45.0,45.0,75.0,65.0,45.0,55.0,45.0,45.0,55.0,75.0,75.0,55.0,65.0,75.0,75.0,45.0,75.0,75.0,55.0,75.0,75.0,55.0,65.0,65.0,65.0,65.0,55.0,55.0,65.0,75.0,75.0,65.0,75.0,55.0,65.0,55.0,75.0,75.0,75.0,65.0,75.0,65.0,65.0,45.0,55.0,65.0,75.0,65.0,65.0,45.0,55.0,45.0,65.0,75.0,45.0,45.0,75.0,45.0,55.0,65.0,65.0,55.0,45.0,75.0,45.0,45.0,65.0,55.0,45.0,45.0,55.0,45.0,45.0,55.0,45.0,45.0,65.0,75.0,65.0,45.0,75.0,75.0,75.0,75.0,75.0,75.0,75.0,45.0,55.0,75.0,45.0,75.0,55.0,65.0,65.0,75.0,45.0,45.0,75.0,55.0,55.0,75.0,45.0,75.0,75.0,45.0,45.0,45.0,45.0,65.0,55.0,75.0,75.0,65.0,75.0,65.0,65.0,75.0,65.0,65.0,55.0,45.0,75.0,45.0,75.0,75.0,65.0,45.0,45.0,65.0,75.0,75.0,55.0,55.0,75.0,55.0,75.0,75.0,65.0,55.0,45.0,55.0,55.0,75.0,55.0,45.0,55.0,55.0,45.0,65.0,55.0,65.0,55.0,55.0,65.0,75.0,45.0,65.0,75.0,65.0,45.0,65.0,55.0,55.0,55.0,75.0,75.0,45.0,45.0,65.0,65.0,75.0,55.0,75.0,75.0,45.0,65.0,45.0,75.0,65.0,55.0,65.0,65.0,45.0,55.0,75.0,55.0,45.0,75.0,55.0,55.0,75.0,55.0,75.0,55.0,55.0,45.0,75.0,75.0,45.0,75.0,45.0,65.0,45.0,55.0,55.0,55.0,55.0,45.0,65.0,75.0,45.0,55.0,45.0,75.0,55.0,65.0,55.0,75.0,55.0,45.0,75.0,45.0,55.0,45.0,75.0,55.0,55.0,45.0,75.0,65.0,55.0,65.0,75.0,65.0,65.0,65.0,75.0,55.0,75.0,55.0,45.0,45.0,65.0,55.0,45.0,45.0,75.0,55.0,55.0,75.0,45.0,75.0,75.0,75.0,65.0,75.0,75.0,55.0,55.0,45.0,75.0,65.0,65.0,65.0,45.0,75.0,65.0,75.0,65.0,55.0,45.0,75.0,45.0,45.0,65.0,45.0,75.0,55.0,55.0,45.0,75.0,75.0,55.0,55.0,75.0,75.0,65.0,55.0,65.0,75.0,65.0,45.0,55.0,65.0,45.0,65.0,45.0,55.0,75.0,55.0,75.0,45.0,55.0,65.0,65.0,55.0,55.0,55.0,75.0,45.0,55.0,55.0,45.0,75.0,55.0,55.0,45.0,45.0,45.0,75.0,55.0,65.0,55.0,55.0,45.0,65.0,55.0,65.0,45.0,65.0,55.0,75.0,75.0,75.0,75.0,75.0,55.0,65.0,75.0,75.0,55.0,45.0,45.0,75.0,55.0,75.0,65.0,65.0,45.0,55.0,75.0,65.0,75.0,45.0,45.0,75.0,75.0,75.0,75.0,45.0,75.0,75.0,55.0,65.0,45.0,75.0,65.0,45.0,65.0,75.0,65.0,55.0,45.0,55.0,55.0,75.0,75.0,75.0,75.0,75.0,65.0,75.0,75.0,65.0,45.0,45.0,45.0,45.0,45.0,65.0,75.0,75.0,45.0,75.0,75.0,65.0,75.0,75.0,75.0,75.0,45.0,65.0,55.0,75.0,75.0,45.0,75.0,65.0,45.0,75.0,75.0,75.0,65.0,75.0,55.0,75.0,75.0,65.0,45.0,55.0,75.0,65.0,45.0,75.0,75.0,45.0,75.0,65.0,45.0,65.0,55.0,45.0,65.0,45.0,45.0,65.0,55.0,45.0,45.0,65.0,45.0,55.0,45.0,55.0,55.0,75.0,45.0,45.0,55.0,45.0,55.0,45.0,45.0,75.0,75.0,65.0,75.0,45.0,65.0,65.0,75.0,65.0,75.0,55.0,65.0,75.0,45.0,75.0,45.0,65.0,75.0,75.0,45.0,45.0,65.0,45.0,55.0,75.0,55.0,45.0,55.0,55.0,45.0,55.0,55.0,75.0,45.0,45.0,75.0,55.0,75.0,75.0,55.0,65.0,75.0,75.0,65.0,45.0,65.0,75.0,75.0,45.0,45.0,65.0,45.0,65.0,65.0,75.0,55.0,75.0,55.0,45.0,65.0,45.0,55.0,45.0,45.0,55.0,65.0,55.0,55.0,55.0,65.0,45.0,55.0,55.0,45.0,45.0,65.0,65.0,45.0,45.0,55.0,75.0,45.0,65.0,65.0,45.0,65.0,45.0,55.0,65.0,65.0,55.0,75.0,55.0,65.0,55.0,65.0,55.0,75.0,75.0,65.0,75.0,55.0,45.0,65.0,75.0,75.0,55.0,75.0,65.0,75.0,75.0,65.0,75.0,75.0,45.0,45.0,75.0,75.0,65.0,65.0,45.0,65.0,65.0,75.0,65.0,45.0,75.0,75.0,65.0,55.0,45.0,75.0,45.0,65.0,45.0,55.0,75.0,45.0,45.0,45.0,65.0,45.0,45.0,45.0,45.0,75.0,45.0,55.0,55.0,75.0,65.0,55.0,75.0,75.0,75.0,65.0,45.0,45.0,65.0,75.0,65.0,45.0,45.0,65.0,65.0,55.0,65.0,55.0,75.0,65.0,75.0,75.0,75.0,55.0,45.0,75.0,45.0,55.0,75.0,75.0,55.0,65.0,45.0,45.0,65.0,45.0,75.0,55.0,45.0,45.0,55.0,45.0,65.0,65.0,45.0,45.0,55.0,65.0,45.0,55.0,45.0,65.0,65.0,45.0,65.0,65.0,55.0,75.0,45.0,65.0,75.0,45.0,75.0,65.0,55.0,75.0,75.0,75.0,45.0,65.0,65.0,65.0,45.0,55.0,45.0,45.0,55.0,75.0,75.0,75.0,55.0,75.0,75.0,65.0,75.0,75.0,65.0,75.0,75.0,45.0,65.0,75.0,65.0,75.0,65.0,65.0,65.0,55.0,75.0,55.0,45.0,65.0,75.0,45.0,65.0,45.0,55.0,75.0,75.0,75.0,45.0,55.0,65.0,55.0,45.0,45.0,45.0,75.0,55.0,45.0,65.0,65.0,65.0,65.0,75.0,55.0,75.0,65.0,55.0,75.0,65.0,65.0,65.0,75.0,45.0,45.0,55.0,75.0,55.0,65.0,55.0,65.0,55.0,75.0,55.0,75.0,75.0,75.0,65.0,45.0,65.0,65.0,55.0,75.0,55.0,55.0,45.0,65.0,55.0,75.0,45.0,45.0,65.0,75.0,55.0,75.0,55.0,75.0,65.0,75.0,65.0,75.0,45.0,45.0,45.0,45.0,45.0,55.0,65.0,65.0,75.0,55.0,45.0,55.0,65.0,65.0,65.0,55.0,45.0,65.0,65.0,45.0,55.0,65.0,55.0,45.0,45.0,75.0,65.0,45.0,45.0,75.0,65.0,65.0,65.0,45.0,65.0,45.0,45.0,75.0,65.0,45.0,45.0,65.0,75.0,45.0,75.0,75.0,75.0,55.0,65.0,75.0,65.0,75.0,75.0,55.0,55.0,55.0,45.0,75.0,65.0,65.0,55.0,45.0,65.0,65.0,75.0,75.0,45.0,75.0,75.0,75.0,65.0,55.0,45.0,55.0,65.0,45.0,65.0,45.0,45.0,65.0,75.0,75.0,75.0,45.0,55.0,45.0,55.0,55.0,75.0,75.0,65.0,75.0,55.0,45.0,65.0,65.0,75.0,65.0,75.0,55.0,45.0,45.0,75.0,55.0,75.0,45.0,65.0,55.0,65.0,75.0,65.0,75.0,75.0,75.0,75.0,55.0,75.0,45.0,75.0,65.0,75.0,75.0,45.0,45.0,65.0,55.0,75.0,65.0,65.0,55.0,65.0,65.0,55.0,45.0,65.0,75.0,75.0,55.0,65.0,65.0,45.0,65.0,55.0,55.0,65.0,55.0,55.0,65.0,75.0,55.0,55.0,65.0,45.0,65.0,75.0,55.0,75.0,65.0,55.0,65.0,55.0,45.0,55.0,75.0,45.0,75.0,75.0,65.0,75.0,75.0,65.0,65.0,45.0,55.0,65.0,75.0,75.0,65.0,75.0,65.0,55.0,75.0,45.0,75.0,45.0,75.0,45.0,65.0,45.0,65.0,55.0,65.0,65.0,65.0,65.0,75.0,75.0,75.0,75.0,75.0,45.0,75.0,55.0,75.0,55.0,65.0,75.0,65.0,65.0,55.0,55.0,75.0,65.0,45.0,65.0,75.0,75.0,45.0,75.0,75.0,65.0,55.0,55.0,75.0,65.0,65.0,65.0,45.0,75.0,65.0,45.0,65.0,65.0,65.0,55.0,55.0,65.0,65.0,55.0,65.0,75.0,45.0,75.0,75.0,65.0,45.0,65.0,75.0,65.0,55.0,65.0,75.0,45.0,55.0,65.0,75.0,75.0,45.0,45.0,65.0,75.0,75.0,45.0,65.0,65.0,65.0,55.0,45.0,65.0,75.0,45.0,75.0,45.0,45.0,75.0,75.0,75.0,55.0,75.0,65.0,65.0,65.0,65.0,75.0,75.0,55.0,75.0,75.0,55.0,45.0,45.0,65.0,65.0,75.0,55.0,75.0,55.0,75.0,65.0,45.0,45.0,65.0,75.0,65.0,75.0,55.0,75.0,75.0,55.0,65.0,75.0,75.0,45.0,65.0,55.0,75.0,65.0,75.0,75.0,45.0,45.0,65.0,45.0,65.0,75.0,75.0,45.0,55.0,65.0,55.0,55.0,45.0,75.0,45.0,65.0,65.0,75.0,75.0,75.0,65.0,75.0,45.0,55.0,55.0,75.0,55.0,65.0,45.0,55.0,55.0,55.0,45.0,75.0,75.0,65.0,45.0,75.0,45.0,45.0,65.0,75.0,55.0,55.0,75.0,75.0,75.0,75.0,45.0,75.0,65.0,55.0,55.0,75.0,65.0,55.0,55.0,45.0,75.0,45.0,75.0,45.0,65.0,75.0,75.0,65.0,45.0,45.0,65.0,45.0,75.0,75.0,55.0,55.0,45.0,75.0,45.0,45.0,75.0,75.0,55.0,55.0,45.0,45.0,75.0,65.0,55.0,55.0,75.0,65.0,55.0,75.0,55.0,65.0,45.0,55.0,45.0,55.0,75.0,55.0,45.0,55.0,45.0,65.0,55.0,75.0,75.0,55.0,55.0,55.0,65.0,75.0,75.0,65.0,75.0,75.0,75.0,55.0,75.0,45.0,65.0,55.0,65.0,65.0,55.0,75.0,45.0,75.0,65.0,65.0,65.0,45.0,45.0,75.0,65.0,45.0,55.0,75.0,65.0,75.0,45.0,65.0,75.0,75.0,55.0,55.0,45.0,45.0,55.0,55.0,65.0,55.0,55.0,75.0,65.0,55.0,45.0,55.0,45.0,75.0,45.0,65.0,65.0,75.0,75.0,45.0,55.0,75.0,75.0,75.0,45.0,55.0,65.0,65.0,75.0,65.0,75.0,45.0,65.0,55.0,75.0,45.0,65.0,75.0,75.0,65.0,75.0,55.0,65.0,55.0,45.0,55.0,45.0,65.0,65.0,45.0,45.0,75.0,55.0,55.0,75.0,55.0,65.0,45.0,75.0,45.0,65.0,55.0,55.0,75.0,65.0,65.0,45.0,45.0,75.0,45.0,75.0,45.0,65.0,65.0,75.0,45.0,65.0,55.0,65.0,65.0,75.0,55.0,75.0,75.0,45.0,75.0,45.0,65.0,75.0,75.0,65.0,75.0,55.0,65.0,75.0,75.0,65.0,75.0,45.0,55.0,45.0,65.0,65.0,75.0,45.0,65.0,55.0,45.0,65.0,65.0,45.0,75.0,75.0,75.0,45.0,45.0,45.0,55.0,45.0,65.0,55.0,75.0,55.0,65.0,75.0,75.0,55.0,65.0,65.0,55.0,75.0,65.0,65.0,75.0,65.0,65.0,75.0,55.0,45.0,65.0,75.0,65.0,45.0,65.0,55.0,75.0,75.0,55.0,65.0,75.0,45.0,55.0,55.0,45.0,65.0,75.0,45.0,55.0,45.0,65.0,75.0,75.0,45.0,45.0,75.0,75.0,75.0,55.0,65.0,55.0,65.0,75.0,55.0,55.0,65.0,45.0,45.0,75.0,45.0,65.0,45.0,75.0,45.0,55.0,45.0,75.0,55.0,55.0,45.0,65.0,55.0,65.0,55.0,55.0,75.0,45.0,75.0,75.0,65.0,55.0,75.0,75.0,75.0,65.0,55.0,65.0,45.0,75.0,75.0,65.0,75.0,65.0,75.0,45.0,75.0,75.0,75.0,55.0,45.0,55.0,55.0,75.0,45.0,65.0,75.0,45.0,45.0,65.0,55.0,75.0,45.0,45.0,45.0,45.0,65.0,55.0,65.0,45.0,45.0,55.0,75.0,65.0,75.0,75.0,55.0,65.0,65.0,75.0,75.0,55.0,45.0,65.0,75.0,75.0,65.0,75.0,45.0,65.0,55.0,45.0,75.0,65.0,75.0,75.0,75.0,65.0,65.0,45.0,75.0,55.0,75.0,45.0,55.0,55.0,75.0,75.0,75.0,55.0,55.0,75.0,65.0,55.0,65.0,75.0,65.0,75.0,75.0,55.0,55.0,75.0,75.0,45.0,75.0,55.0,45.0,55.0,75.0,55.0,55.0,45.0,65.0,65.0,45.0,65.0,75.0,45.0,55.0,65.0,75.0,45.0,75.0,45.0,55.0,75.0,65.0,65.0,75.0,45.0,65.0,65.0,65.0,45.0,45.0,65.0,45.0,45.0,75.0,65.0,45.0,55.0,45.0,65.0,45.0,45.0,75.0,55.0,75.0,55.0,55.0,65.0,75.0,75.0,75.0,45.0,45.0,55.0,65.0,55.0,55.0,45.0,75.0,65.0,75.0,55.0,75.0,75.0,75.0,65.0,75.0,55.0,45.0,75.0,45.0,75.0,75.0,75.0,45.0,55.0,75.0,55.0,45.0,75.0,55.0,75.0,55.0,75.0,75.0,65.0,55.0,55.0,55.0,65.0,55.0,65.0,65.0,75.0,55.0,75.0,65.0,45.0,45.0,75.0,65.0,45.0,55.0,45.0,75.0,55.0,65.0,65.0,45.0,65.0,45.0,45.0,75.0,75.0,75.0,45.0,45.0,55.0,55.0,45.0,75.0,75.0,55.0,55.0,45.0,45.0,65.0,55.0,75.0,65.0,45.0,65.0,65.0,75.0,65.0,55.0,45.0,75.0,55.0,75.0,75.0,65.0,45.0,75.0,45.0,65.0,45.0,45.0,75.0,55.0,75.0,55.0,65.0,75.0,65.0,65.0,75.0,75.0,45.0,65.0,45.0,45.0,75.0,45.0,45.0,55.0,65.0,65.0,75.0,55.0,45.0,65.0,55.0,45.0,65.0,55.0,45.0,65.0,55.0,45.0,65.0,55.0,75.0,45.0,45.0,65.0,45.0,55.0,75.0,45.0,65.0,75.0,45.0,45.0,65.0,45.0,75.0,75.0,65.0,55.0,45.0,65.0,75.0,65.0,55.0,75.0,55.0,65.0,65.0,65.0,75.0,55.0,45.0,65.0,55.0,45.0,75.0,45.0,55.0,65.0,45.0,55.0,65.0,55.0,45.0,45.0,75.0,65.0,65.0,55.0,65.0,55.0,55.0,75.0,65.0,45.0,45.0,75.0,65.0,45.0,65.0,65.0,65.0,65.0,65.0,75.0,65.0,55.0,55.0,65.0,75.0,55.0,45.0,65.0,45.0,75.0,45.0,45.0,65.0,75.0,75.0,65.0,45.0,75.0,75.0,45.0,75.0,65.0,65.0,65.0,55.0,65.0,65.0,65.0,45.0,75.0,45.0,45.0,75.0,75.0,55.0,45.0,75.0,55.0,75.0,45.0,75.0,65.0,55.0,45.0,45.0,65.0,75.0,65.0,65.0,75.0,45.0,75.0,75.0,75.0,65.0,55.0,75.0,45.0,55.0,65.0,75.0,45.0,75.0,65.0,45.0,55.0,45.0,75.0,65.0,75.0,75.0,75.0,55.0,45.0,45.0,65.0,45.0,75.0,45.0,55.0,75.0,75.0,75.0,65.0,65.0,65.0,75.0,65.0,45.0,45.0,65.0,75.0,65.0,45.0,65.0,45.0,45.0,65.0,45.0,55.0,65.0,75.0,55.0,65.0,75.0,45.0,55.0,75.0,65.0,45.0,55.0,75.0,65.0,55.0,75.0,55.0,45.0,45.0,75.0,75.0,75.0,75.0,55.0,55.0,65.0,55.0,45.0,75.0,55.0,75.0,45.0,45.0,55.0,45.0,55.0,75.0,55.0,55.0,45.0,75.0,55.0,65.0,55.0,65.0,45.0,45.0,65.0,75.0,55.0,55.0,65.0,55.0,55.0,75.0,45.0,55.0,75.0,65.0,75.0,55.0,65.0,65.0,45.0,65.0,55.0,55.0,55.0,45.0,65.0,65.0,55.0,45.0,45.0,45.0,65.0,65.0,45.0,55.0,75.0,65.0,55.0,45.0,75.0,55.0,55.0,65.0,65.0,45.0,45.0,55.0,55.0,65.0,65.0,65.0,55.0,65.0,75.0,65.0,65.0,65.0,55.0,55.0,45.0,75.0,55.0,55.0,75.0,75.0,55.0,75.0,75.0,75.0,55.0,45.0,45.0,45.0,55.0,75.0,55.0,45.0,65.0,75.0,55.0,75.0,75.0,75.0,75.0,75.0,65.0,55.0,65.0,65.0,75.0,45.0,75.0,75.0,75.0,75.0,55.0,65.0,45.0,45.0,65.0,45.0,75.0,45.0,75.0,65.0,65.0,55.0,45.0,45.0,45.0,55.0,75.0,75.0,45.0,75.0,65.0,75.0,45.0,45.0,75.0,65.0,55.0,45.0,75.0,75.0,55.0,45.0,65.0,75.0,65.0,45.0,45.0,55.0,45.0,65.0,75.0,65.0,75.0,65.0,45.0,55.0,55.0,75.0,65.0,55.0,75.0,65.0,75.0,55.0,55.0,65.0,75.0,75.0,75.0,45.0,55.0,65.0,55.0,45.0,75.0,75.0,45.0,75.0,75.0,45.0,65.0,45.0,65.0,65.0,65.0,75.0,75.0,55.0,75.0,55.0,65.0,65.0,75.0,45.0,65.0,75.0,65.0,75.0,75.0,65.0,45.0,65.0,75.0,45.0,55.0,45.0,75.0,55.0,75.0,45.0,55.0,55.0,45.0,65.0,75.0,65.0,45.0,55.0,65.0,75.0,45.0,65.0,75.0,55.0,65.0,65.0,75.0,45.0,55.0,65.0,55.0,55.0,55.0,75.0,75.0,55.0,75.0,45.0,55.0,55.0,75.0,45.0,45.0,75.0,55.0,75.0,55.0,75.0,55.0,75.0,65.0,45.0,75.0,75.0,75.0,55.0,55.0,75.0,55.0,45.0,65.0,45.0,55.0,75.0,75.0,45.0,55.0,65.0,45.0,45.0,75.0,55.0,55.0,55.0,45.0,75.0,55.0,75.0,55.0,45.0,65.0,55.0,55.0,55.0,45.0,55.0,55.0,45.0,65.0,45.0,45.0,55.0,45.0,65.0,75.0,75.0,55.0,55.0,55.0,65.0,45.0,55.0,55.0,65.0,45.0,75.0,65.0,55.0,75.0,65.0,55.0,65.0,75.0,75.0,75.0,65.0,45.0,65.0,75.0,65.0,55.0,55.0,65.0,75.0,55.0,75.0,55.0,65.0,65.0,45.0,55.0,65.0,65.0,55.0,45.0,65.0,55.0,55.0,45.0,65.0,65.0,65.0,75.0,45.0,65.0,45.0,55.0,65.0,55.0,75.0,55.0,45.0,55.0,45.0,75.0,75.0,65.0,55.0,65.0,75.0,45.0,45.0,45.0,55.0,45.0,75.0,75.0,65.0,75.0,45.0,45.0,65.0,65.0,45.0,45.0,75.0,55.0,75.0,45.0,65.0,45.0,75.0,75.0,75.0,45.0,45.0,75.0,55.0,45.0,75.0,55.0,45.0,55.0,75.0,75.0,55.0,55.0,55.0,45.0,45.0,55.0,65.0,55.0,75.0,75.0,45.0,55.0,65.0,75.0,75.0,75.0,75.0,45.0,65.0,75.0,75.0,55.0,65.0,55.0,75.0,55.0,65.0,45.0,65.0,45.0,75.0,75.0,75.0,65.0,55.0,55.0,55.0,75.0,75.0,75.0,65.0,45.0,75.0,55.0,45.0,65.0,55.0,55.0,55.0,45.0,55.0,45.0,65.0,75.0,65.0,55.0,75.0,75.0,65.0,45.0,45.0,65.0,65.0,65.0,55.0,65.0,55.0,65.0,55.0,65.0,75.0,55.0,75.0,65.0,45.0,75.0,75.0,65.0,65.0,55.0,65.0,75.0,55.0,75.0,75.0,45.0,55.0,45.0,45.0,75.0,45.0,55.0,75.0,55.0,45.0,45.0,45.0,55.0,55.0,65.0,45.0,75.0,75.0,45.0,65.0,75.0,45.0,75.0,55.0,55.0,65.0,45.0,75.0,65.0,45.0,65.0,55.0,65.0,45.0,65.0,45.0,75.0,75.0,65.0,45.0,65.0,45.0,55.0,75.0,65.0,65.0,55.0,45.0,65.0,65.0,45.0,65.0,55.0,75.0,75.0,45.0,45.0,55.0,55.0,55.0,65.0,65.0,55.0,75.0,45.0,75.0,65.0,75.0,65.0,45.0,55.0,45.0,65.0,65.0,45.0,45.0,45.0,55.0,55.0,75.0,75.0,75.0,75.0,65.0,75.0,55.0,45.0,65.0,55.0,65.0,75.0,75.0,55.0,55.0,65.0,75.0,75.0,75.0,75.0,65.0,65.0,55.0,65.0,55.0,55.0,45.0,45.0,75.0,65.0,45.0,65.0,75.0,55.0,65.0,75.0,75.0,55.0,65.0,75.0,55.0,45.0,55.0,65.0,45.0,55.0,45.0,45.0,75.0,55.0,65.0,65.0,65.0,65.0,55.0,65.0,55.0,45.0,65.0,55.0,45.0,65.0,65.0,45.0,55.0,65.0,65.0,45.0,45.0,65.0,55.0,65.0,75.0,75.0,65.0,55.0,65.0,75.0,65.0,55.0,45.0,45.0,45.0,75.0,55.0,55.0,65.0,55.0,45.0,65.0,55.0,55.0,65.0,45.0,65.0,45.0,45.0,45.0,65.0,55.0,65.0,45.0,75.0,55.0,55.0,65.0,45.0,65.0,65.0,65.0,75.0,55.0,65.0,45.0,75.0,45.0,75.0,65.0,55.0,75.0,65.0,55.0,75.0,55.0,65.0,75.0,55.0,45.0,55.0,45.0,45.0,75.0,65.0,55.0,45.0,75.0,65.0,55.0,75.0,75.0,65.0,65.0,75.0,55.0,45.0,55.0,75.0,65.0,45.0,55.0,45.0,75.0,55.0,75.0,65.0,75.0,75.0,75.0,75.0,45.0,55.0,45.0,75.0,55.0,45.0,75.0,45.0,55.0,45.0,75.0,65.0,75.0,65.0,65.0,65.0,75.0,55.0,55.0,65.0,45.0,55.0,55.0,45.0,45.0,65.0,55.0,75.0,45.0,45.0,65.0,55.0,45.0,45.0,65.0,65.0,65.0,65.0,65.0,75.0,75.0,65.0,65.0,45.0,55.0,55.0,55.0,45.0,45.0,75.0,75.0,45.0,45.0,45.0,75.0,45.0,75.0,55.0,45.0,65.0,65.0,65.0,45.0,75.0,75.0,55.0,45.0,75.0,65.0,65.0,55.0,45.0,45.0,55.0,55.0,65.0,65.0,75.0,75.0,45.0,45.0,45.0,45.0,65.0,75.0,75.0,75.0,65.0,75.0,75.0,75.0,75.0,75.0,55.0,55.0,45.0,55.0,65.0,65.0,45.0,45.0,65.0,45.0,45.0,65.0,65.0,45.0,55.0,75.0,55.0,65.0,55.0,75.0,55.0,55.0,55.0,65.0,75.0,65.0,55.0,55.0,75.0,55.0,45.0,55.0,75.0,65.0,75.0,65.0,75.0,55.0,75.0,65.0,75.0,45.0,55.0,75.0,65.0,65.0,65.0,65.0,75.0,45.0,45.0,45.0,65.0,65.0,75.0,65.0,75.0,65.0,55.0,75.0,65.0,55.0,75.0,65.0,45.0,75.0,65.0,65.0,75.0,55.0,45.0,75.0,75.0,45.0,55.0,45.0,75.0,75.0,55.0,75.0,55.0,75.0,75.0,75.0,55.0,45.0,65.0,45.0,45.0,65.0,65.0,65.0,45.0,55.0,65.0,65.0,55.0,75.0,75.0,55.0,75.0,65.0,55.0,75.0,65.0,75.0,45.0,45.0,45.0,45.0,65.0,75.0,45.0,55.0,65.0,75.0,75.0,45.0,75.0,65.0,75.0,75.0,65.0,65.0,75.0,55.0,65.0,65.0,75.0,45.0,45.0,65.0,45.0,55.0,75.0,45.0,45.0,75.0,55.0,65.0,65.0,45.0,65.0,45.0,45.0,45.0,55.0,45.0,65.0,75.0,55.0,75.0,65.0,75.0,45.0,75.0,65.0,65.0,45.0,45.0,45.0,75.0,65.0,65.0,45.0,45.0,75.0,75.0,75.0,45.0,75.0,45.0,65.0,55.0,75.0,75.0,45.0,65.0,55.0,65.0,65.0,55.0,45.0,75.0,65.0,45.0,55.0,65.0,65.0,55.0,75.0,75.0,75.0,65.0,55.0,45.0,75.0,45.0,75.0,65.0,65.0,55.0,65.0,65.0,45.0,75.0,55.0,55.0,75.0,45.0,65.0,55.0,65.0,55.0,75.0,55.0,55.0,55.0,65.0,55.0,75.0,45.0,45.0,75.0,45.0,65.0,55.0,75.0,55.0,55.0,75.0,45.0,65.0,75.0,45.0,45.0,65.0,75.0,55.0,65.0,45.0,65.0,65.0,65.0,55.0,45.0,65.0,45.0,45.0,55.0,45.0,75.0,65.0,65.0,75.0,45.0,65.0,55.0,75.0,75.0,75.0,55.0,65.0,75.0,65.0,75.0,55.0,65.0,65.0,65.0,55.0,75.0,55.0,65.0,55.0,45.0,65.0,45.0,65.0,65.0,55.0,65.0,65.0,65.0,75.0,75.0,65.0,65.0,65.0,55.0,45.0,55.0,55.0,65.0,65.0,45.0,45.0,65.0,65.0,75.0,45.0,45.0,75.0,75.0,75.0,65.0,45.0,75.0,65.0,45.0,55.0,75.0,45.0,45.0,65.0,55.0,65.0,45.0,45.0,65.0,45.0,75.0,45.0,55.0,65.0,55.0,55.0,45.0,55.0,45.0,65.0,65.0,45.0,55.0,55.0,75.0,75.0,65.0,55.0,55.0,75.0,65.0,75.0,55.0,55.0,65.0,65.0,45.0,65.0,55.0,55.0,55.0,75.0,55.0,55.0,55.0,75.0,75.0,45.0,75.0,55.0,55.0,65.0,65.0,55.0,65.0,75.0,45.0,75.0,55.0,55.0,55.0,55.0,65.0,65.0,75.0,75.0,65.0,65.0,55.0,65.0,65.0,65.0,75.0,75.0,55.0,55.0,55.0,75.0,45.0,75.0,75.0,55.0,45.0,65.0,45.0,75.0,75.0,65.0,75.0,45.0,55.0,65.0,75.0,65.0,45.0,55.0,45.0,65.0,75.0,45.0,55.0,65.0,75.0,65.0,45.0,45.0,45.0,55.0,75.0,55.0,75.0,65.0,65.0,75.0,75.0,65.0,65.0,75.0,55.0,65.0,65.0,75.0,65.0,75.0,75.0,55.0,55.0,75.0,75.0,75.0,55.0,55.0,45.0,65.0,55.0,65.0,45.0,75.0,75.0,55.0,65.0,75.0,55.0,45.0,75.0,55.0,65.0,45.0,55.0,55.0,65.0,55.0,55.0,45.0,65.0,65.0,75.0,45.0,45.0
p3/preprocess/Ovarian_Cancer/clinical_data/GSE135820.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ ,GSM4030662,GSM4030663,GSM4030664,GSM4030665,GSM4030666,GSM4030667,GSM4030668,GSM4030669,GSM4030670,GSM4030671,GSM4030672,GSM4030673,GSM4030674,GSM4030675,GSM4030676,GSM4030677,GSM4030678,GSM4030679,GSM4030680,GSM4030681,GSM4030682,GSM4030683,GSM4030684,GSM4030685,GSM4030686,GSM4030687,GSM4030688,GSM4030689,GSM4030690,GSM4030691,GSM4030692,GSM4030693,GSM4030694,GSM4030695,GSM4030696,GSM4030697,GSM4030698,GSM4030699,GSM4030700,GSM4030701,GSM4030702,GSM4030703,GSM4030704,GSM4030705,GSM4030706,GSM4030707,GSM4030708,GSM4030709,GSM4030710,GSM4030711,GSM4030712,GSM4030713,GSM4030714,GSM4030715,GSM4030716,GSM4030717,GSM4030718,GSM4030719,GSM4030720,GSM4030721,GSM4030722,GSM4030723,GSM4030724,GSM4030725,GSM4030726,GSM4030727,GSM4030728,GSM4030729,GSM4030730,GSM4030731,GSM4030732,GSM4030733,GSM4030734,GSM4030735,GSM4030736,GSM4030737,GSM4030738,GSM4030739,GSM4030740,GSM4030741,GSM4030742,GSM4030743,GSM4030744,GSM4030745,GSM4030746,GSM4030747,GSM4030748,GSM4030749,GSM4030750,GSM4030751,GSM4030752,GSM4030753,GSM4030754,GSM4030755,GSM4030756,GSM4030757,GSM4030758,GSM4030759,GSM4030760,GSM4030761,GSM4030762,GSM4030763,GSM4030764,GSM4030765,GSM4030766,GSM4030767,GSM4030768,GSM4030769,GSM4030770,GSM4030771,GSM4030772,GSM4030773,GSM4030774,GSM4030775,GSM4030776,GSM4030777,GSM4030778,GSM4030779,GSM4030780,GSM4030781,GSM4030782,GSM4030783,GSM4030784,GSM4030785,GSM4030786,GSM4030787,GSM4030788,GSM4030789,GSM4030790,GSM4030791,GSM4030792,GSM4030793,GSM4030794,GSM4030795,GSM4030796,GSM4030797,GSM4030798,GSM4030799,GSM4030800,GSM4030801,GSM4030802,GSM4030803,GSM4030804,GSM4030805,GSM4030806,GSM4030807,GSM4030808,GSM4030809,GSM4030810,GSM4030811,GSM4030812,GSM4030813,GSM4030814,GSM4030815,GSM4030816,GSM4030817,GSM4030818,GSM4030819,GSM4030820,GSM4030821,GSM4030822,GSM4030823,GSM4030824,GSM4030825,GSM4030826,GSM4030827,GSM4030828,GSM4030829,GSM4030830,GSM4030831,GSM4030832,GSM4030833,GSM4030834,GSM4030835,GSM4030836,GSM4030837,GSM4030838,GSM4030839,GSM4030840,GSM4030841,GSM4030842,GSM4030843,GSM4030844,GSM4030845,GSM4030846,GSM4030847,GSM4030848,GSM4030849,GSM4030850,GSM4030851,GSM4030852,GSM4030853,GSM4030854,GSM4030855,GSM4030856,GSM4030857,GSM4030858,GSM4030859,GSM4030860,GSM4030861,GSM4030862,GSM4030863,GSM4030864,GSM4030865,GSM4030866,GSM4030867,GSM4030868,GSM4030869,GSM4030870,GSM4030871,GSM4030872,GSM4030873,GSM4030874,GSM4030875,GSM4030876,GSM4030877,GSM4030878,GSM4030879,GSM4030880,GSM4030881,GSM4030882,GSM4030883,GSM4030884,GSM4030885,GSM4030886,GSM4030887,GSM4030888,GSM4030889,GSM4030890,GSM4030891,GSM4030892,GSM4030893,GSM4030894,GSM4030895,GSM4030896,GSM4030897,GSM4030898,GSM4030899,GSM4030900,GSM4030901,GSM4030902,GSM4030903,GSM4030904,GSM4030905,GSM4030906,GSM4030907,GSM4030908,GSM4030909,GSM4030910,GSM4030911,GSM4030912,GSM4030913,GSM4030914,GSM4030915,GSM4030916,GSM4030917,GSM4030918,GSM4030919,GSM4030920,GSM4030921,GSM4030922,GSM4030923,GSM4030924,GSM4030925,GSM4030926,GSM4030927,GSM4030928,GSM4030929,GSM4030930,GSM4030931,GSM4030932,GSM4030933,GSM4030934,GSM4030935,GSM4030936,GSM4030937,GSM4030938,GSM4030939,GSM4030940,GSM4030941,GSM4030942,GSM4030943,GSM4030944,GSM4030945,GSM4030946,GSM4030947,GSM4030948,GSM4030949,GSM4030950,GSM4030951,GSM4030952,GSM4030953,GSM4030954,GSM4030955,GSM4030956,GSM4030957,GSM4030958,GSM4030959,GSM4030960,GSM4030961,GSM4030962,GSM4030963,GSM4030964,GSM4030965,GSM4030966,GSM4030967,GSM4030968,GSM4030969,GSM4030970,GSM4030971,GSM4030972,GSM4030973,GSM4030974,GSM4030975,GSM4030976,GSM4030977,GSM4030978,GSM4030979,GSM4030980,GSM4030981,GSM4030982,GSM4030983,GSM4030984,GSM4030985,GSM4030986,GSM4030987,GSM4030988,GSM4030989,GSM4030990,GSM4030991,GSM4030992,GSM4030993,GSM4030994,GSM4030995,GSM4030996,GSM4030997,GSM4030998,GSM4030999,GSM4031000,GSM4031001,GSM4031002,GSM4031003,GSM4031004,GSM4031005,GSM4031006,GSM4031007,GSM4031008,GSM4031009,GSM4031010,GSM4031011,GSM4031012,GSM4031013,GSM4031014,GSM4031015,GSM4031016,GSM4031017,GSM4031018,GSM4031019,GSM4031020,GSM4031021,GSM4031022,GSM4031023,GSM4031024,GSM4031025,GSM4031026,GSM4031027,GSM4031028,GSM4031029,GSM4031030,GSM4031031,GSM4031032,GSM4031033,GSM4031034,GSM4031035,GSM4031036,GSM4031037,GSM4031038,GSM4031039,GSM4031040,GSM4031041,GSM4031042,GSM4031043,GSM4031044,GSM4031045,GSM4031046,GSM4031047,GSM4031048,GSM4031049,GSM4031050,GSM4031051,GSM4031052,GSM4031053,GSM4031054,GSM4031055,GSM4031056,GSM4031057,GSM4031058,GSM4031059,GSM4031060,GSM4031061,GSM4031062,GSM4031063,GSM4031064,GSM4031065,GSM4031066,GSM4031067,GSM4031068,GSM4031069,GSM4031070,GSM4031071,GSM4031072,GSM4031073,GSM4031074,GSM4031075,GSM4031076,GSM4031077,GSM4031078,GSM4031079,GSM4031080,GSM4031081,GSM4031082,GSM4031083,GSM4031084,GSM4031085,GSM4031086,GSM4031087,GSM4031088,GSM4031089,GSM4031090,GSM4031091,GSM4031092,GSM4031093,GSM4031094,GSM4031095,GSM4031096,GSM4031097,GSM4031098,GSM4031099,GSM4031100,GSM4031101,GSM4031102,GSM4031103,GSM4031104,GSM4031105,GSM4031106,GSM4031107,GSM4031108,GSM4031109,GSM4031110,GSM4031111,GSM4031112,GSM4031113,GSM4031114,GSM4031115,GSM4031116,GSM4031117,GSM4031118,GSM4031119,GSM4031120,GSM4031121,GSM4031122,GSM4031123,GSM4031124,GSM4031125,GSM4031126,GSM4031127,GSM4031128,GSM4031129,GSM4031130,GSM4031131,GSM4031132,GSM4031133,GSM4031134,GSM4031135,GSM4031136,GSM4031137,GSM4031138,GSM4031139,GSM4031140,GSM4031141,GSM4031142,GSM4031143,GSM4031144,GSM4031145,GSM4031146,GSM4031147,GSM4031148,GSM4031149,GSM4031150,GSM4031151,GSM4031152,GSM4031153,GSM4031154,GSM4031155,GSM4031156,GSM4031157,GSM4031158,GSM4031159,GSM4031160,GSM4031161,GSM4031162,GSM4031163,GSM4031164,GSM4031165,GSM4031166,GSM4031167,GSM4031168,GSM4031169,GSM4031170,GSM4031171,GSM4031172,GSM4031173,GSM4031174,GSM4031175,GSM4031176,GSM4031177,GSM4031178,GSM4031179,GSM4031180,GSM4031181,GSM4031182,GSM4031183,GSM4031184,GSM4031185,GSM4031186,GSM4031187,GSM4031188,GSM4031189,GSM4031190,GSM4031191,GSM4031192,GSM4031193,GSM4031194,GSM4031195,GSM4031196,GSM4031197,GSM4031198,GSM4031199,GSM4031200,GSM4031201,GSM4031202,GSM4031203,GSM4031204,GSM4031205,GSM4031206,GSM4031207,GSM4031208,GSM4031209,GSM4031210,GSM4031211,GSM4031212,GSM4031213,GSM4031214,GSM4031215,GSM4031216,GSM4031217,GSM4031218,GSM4031219,GSM4031220,GSM4031221,GSM4031222,GSM4031223,GSM4031224,GSM4031225,GSM4031226,GSM4031227,GSM4031228,GSM4031229,GSM4031230,GSM4031231,GSM4031232,GSM4031233,GSM4031234,GSM4031235,GSM4031236,GSM4031237,GSM4031238,GSM4031239,GSM4031240,GSM4031241,GSM4031242,GSM4031243,GSM4031244,GSM4031245,GSM4031246,GSM4031247,GSM4031248,GSM4031249,GSM4031250,GSM4031251,GSM4031252,GSM4031253,GSM4031254,GSM4031255,GSM4031256,GSM4031257,GSM4031258,GSM4031259,GSM4031260,GSM4031261,GSM4031262,GSM4031263,GSM4031264,GSM4031265,GSM4031266,GSM4031267,GSM4031268,GSM4031269,GSM4031270,GSM4031271,GSM4031272,GSM4031273,GSM4031274,GSM4031275,GSM4031276,GSM4031277,GSM4031278,GSM4031279,GSM4031280,GSM4031281,GSM4031282,GSM4031283,GSM4031284,GSM4031285,GSM4031286,GSM4031287,GSM4031288,GSM4031289,GSM4031290,GSM4031291,GSM4031292,GSM4031293,GSM4031294,GSM4031295,GSM4031296,GSM4031297,GSM4031298,GSM4031299,GSM4031300,GSM4031301,GSM4031302,GSM4031303,GSM4031304,GSM4031305,GSM4031306,GSM4031307,GSM4031308,GSM4031309,GSM4031310,GSM4031311,GSM4031312,GSM4031313,GSM4031314,GSM4031315,GSM4031316,GSM4031317,GSM4031318,GSM4031319,GSM4031320,GSM4031321,GSM4031322,GSM4031323,GSM4031324,GSM4031325,GSM4031326,GSM4031327,GSM4031328,GSM4031329,GSM4031330,GSM4031331,GSM4031332,GSM4031333,GSM4031334,GSM4031335,GSM4031336,GSM4031337,GSM4031338,GSM4031339,GSM4031340,GSM4031341,GSM4031342,GSM4031343,GSM4031344,GSM4031345,GSM4031346,GSM4031347,GSM4031348,GSM4031349,GSM4031350,GSM4031351,GSM4031352,GSM4031353,GSM4031354,GSM4031355,GSM4031356,GSM4031357,GSM4031358,GSM4031359,GSM4031360,GSM4031361,GSM4031362,GSM4031363,GSM4031364,GSM4031365,GSM4031366,GSM4031367,GSM4031368,GSM4031369,GSM4031370,GSM4031371,GSM4031372,GSM4031373,GSM4031374,GSM4031375,GSM4031376,GSM4031377,GSM4031378,GSM4031379,GSM4031380,GSM4031381,GSM4031382,GSM4031383,GSM4031384,GSM4031385,GSM4031386,GSM4031387,GSM4031388,GSM4031389,GSM4031390,GSM4031391,GSM4031392,GSM4031393,GSM4031394,GSM4031395,GSM4031396,GSM4031397,GSM4031398,GSM4031399,GSM4031400,GSM4031401,GSM4031402,GSM4031403,GSM4031404,GSM4031405,GSM4031406,GSM4031407,GSM4031408,GSM4031409,GSM4031410,GSM4031411,GSM4031412,GSM4031413,GSM4031414,GSM4031415,GSM4031416,GSM4031417,GSM4031418,GSM4031419,GSM4031420,GSM4031421,GSM4031422,GSM4031423,GSM4031424,GSM4031425,GSM4031426,GSM4031427,GSM4031428,GSM4031429,GSM4031430,GSM4031431,GSM4031432,GSM4031433,GSM4031434,GSM4031435,GSM4031436,GSM4031437,GSM4031438,GSM4031439,GSM4031440,GSM4031441,GSM4031442,GSM4031443,GSM4031444,GSM4031445,GSM4031446,GSM4031447,GSM4031448,GSM4031449,GSM4031450,GSM4031451,GSM4031452,GSM4031453,GSM4031454,GSM4031455,GSM4031456,GSM4031457,GSM4031458,GSM4031459,GSM4031460,GSM4031461,GSM4031462,GSM4031463,GSM4031464,GSM4031465,GSM4031466,GSM4031467,GSM4031468,GSM4031469,GSM4031470,GSM4031471,GSM4031472,GSM4031473,GSM4031474,GSM4031475,GSM4031476,GSM4031477,GSM4031478,GSM4031479,GSM4031480,GSM4031481,GSM4031482,GSM4031483,GSM4031484,GSM4031485,GSM4031486,GSM4031487,GSM4031488,GSM4031489,GSM4031490,GSM4031491,GSM4031492,GSM4031493,GSM4031494,GSM4031495,GSM4031496,GSM4031497,GSM4031498,GSM4031499,GSM4031500,GSM4031501,GSM4031502,GSM4031503,GSM4031504,GSM4031505,GSM4031506,GSM4031507,GSM4031508,GSM4031509,GSM4031510,GSM4031511,GSM4031512,GSM4031513,GSM4031514,GSM4031515,GSM4031516,GSM4031517,GSM4031518,GSM4031519,GSM4031520,GSM4031521,GSM4031522,GSM4031523,GSM4031524,GSM4031525,GSM4031526,GSM4031527,GSM4031528,GSM4031529,GSM4031530,GSM4031531,GSM4031532,GSM4031533,GSM4031534,GSM4031535,GSM4031536,GSM4031537,GSM4031538,GSM4031539,GSM4031540,GSM4031541,GSM4031542,GSM4031543,GSM4031544,GSM4031545,GSM4031546,GSM4031547,GSM4031548,GSM4031549,GSM4031550,GSM4031551,GSM4031552,GSM4031553,GSM4031554,GSM4031555,GSM4031556,GSM4031557,GSM4031558,GSM4031559,GSM4031560,GSM4031561,GSM4031562,GSM4031563,GSM4031564,GSM4031565,GSM4031566,GSM4031567,GSM4031568,GSM4031569,GSM4031570,GSM4031571,GSM4031572,GSM4031573,GSM4031574,GSM4031575,GSM4031576,GSM4031577,GSM4031578,GSM4031579,GSM4031580,GSM4031581,GSM4031582,GSM4031583,GSM4031584,GSM4031585,GSM4031586,GSM4031587,GSM4031588,GSM4031589,GSM4031590,GSM4031591,GSM4031592,GSM4031593,GSM4031594,GSM4031595,GSM4031596,GSM4031597,GSM4031598,GSM4031599,GSM4031600,GSM4031601,GSM4031602,GSM4031603,GSM4031604,GSM4031605,GSM4031606,GSM4031607,GSM4031608,GSM4031609,GSM4031610,GSM4031611,GSM4031612,GSM4031613,GSM4031614,GSM4031615,GSM4031616,GSM4031617,GSM4031618,GSM4031619,GSM4031620,GSM4031621,GSM4031622,GSM4031623,GSM4031624,GSM4031625,GSM4031626,GSM4031627,GSM4031628,GSM4031629,GSM4031630,GSM4031631,GSM4031632,GSM4031633,GSM4031634,GSM4031635,GSM4031636,GSM4031637,GSM4031638,GSM4031639,GSM4031640,GSM4031641,GSM4031642,GSM4031643,GSM4031644,GSM4031645,GSM4031646,GSM4031647,GSM4031648,GSM4031649,GSM4031650,GSM4031651,GSM4031652,GSM4031653,GSM4031654,GSM4031655,GSM4031656,GSM4031657,GSM4031658,GSM4031659,GSM4031660,GSM4031661,GSM4031662,GSM4031663,GSM4031664,GSM4031665,GSM4031666,GSM4031667,GSM4031668,GSM4031669,GSM4031670,GSM4031671,GSM4031672,GSM4031673,GSM4031674,GSM4031675,GSM4031676,GSM4031677,GSM4031678,GSM4031679,GSM4031680,GSM4031681,GSM4031682,GSM4031683,GSM4031684,GSM4031685,GSM4031686,GSM4031687,GSM4031688,GSM4031689,GSM4031690,GSM4031691,GSM4031692,GSM4031693,GSM4031694,GSM4031695,GSM4031696,GSM4031697,GSM4031698,GSM4031699,GSM4031700,GSM4031701,GSM4031702,GSM4031703,GSM4031704,GSM4031705,GSM4031706,GSM4031707,GSM4031708,GSM4031709,GSM4031710,GSM4031711,GSM4031712,GSM4031713,GSM4031714,GSM4031715,GSM4031716,GSM4031717,GSM4031718,GSM4031719,GSM4031720,GSM4031721,GSM4031722,GSM4031723,GSM4031724,GSM4031725,GSM4031726,GSM4031727,GSM4031728,GSM4031729,GSM4031730,GSM4031731,GSM4031732,GSM4031733,GSM4031734,GSM4031735,GSM4031736,GSM4031737,GSM4031738,GSM4031739,GSM4031740,GSM4031741,GSM4031742,GSM4031743,GSM4031744,GSM4031745,GSM4031746,GSM4031747,GSM4031748,GSM4031749,GSM4031750,GSM4031751,GSM4031752,GSM4031753,GSM4031754,GSM4031755,GSM4031756,GSM4031757,GSM4031758,GSM4031759,GSM4031760,GSM4031761,GSM4031762,GSM4031763,GSM4031764,GSM4031765,GSM4031766,GSM4031767,GSM4031768,GSM4031769,GSM4031770,GSM4031771,GSM4031772,GSM4031773,GSM4031774,GSM4031775,GSM4031776,GSM4031777,GSM4031778,GSM4031779,GSM4031780,GSM4031781,GSM4031782,GSM4031783,GSM4031784,GSM4031785,GSM4031786,GSM4031787,GSM4031788,GSM4031789,GSM4031790,GSM4031791,GSM4031792,GSM4031793,GSM4031794,GSM4031795,GSM4031796,GSM4031797,GSM4031798,GSM4031799,GSM4031800,GSM4031801,GSM4031802,GSM4031803,GSM4031804,GSM4031805,GSM4031806,GSM4031807,GSM4031808,GSM4031809,GSM4031810,GSM4031811,GSM4031812,GSM4031813,GSM4031814,GSM4031815,GSM4031816,GSM4031817,GSM4031818,GSM4031819,GSM4031820,GSM4031821,GSM4031822,GSM4031823,GSM4031824,GSM4031825,GSM4031826,GSM4031827,GSM4031828,GSM4031829,GSM4031830,GSM4031831,GSM4031832,GSM4031833,GSM4031834,GSM4031835,GSM4031836,GSM4031837,GSM4031838,GSM4031839,GSM4031840,GSM4031841,GSM4031842,GSM4031843,GSM4031844,GSM4031845,GSM4031846,GSM4031847,GSM4031848,GSM4031849,GSM4031850,GSM4031851,GSM4031852,GSM4031853,GSM4031854,GSM4031855,GSM4031856,GSM4031857,GSM4031858,GSM4031859,GSM4031860,GSM4031861,GSM4031862,GSM4031863,GSM4031864,GSM4031865,GSM4031866,GSM4031867,GSM4031868,GSM4031869,GSM4031870,GSM4031871,GSM4031872,GSM4031873,GSM4031874,GSM4031875,GSM4031876,GSM4031877,GSM4031878,GSM4031879,GSM4031880,GSM4031881,GSM4031882,GSM4031883,GSM4031884,GSM4031885,GSM4031886,GSM4031887,GSM4031888,GSM4031889,GSM4031890,GSM4031891,GSM4031892,GSM4031893,GSM4031894,GSM4031895,GSM4031896,GSM4031897,GSM4031898,GSM4031899,GSM4031900,GSM4031901,GSM4031902,GSM4031903,GSM4031904,GSM4031905,GSM4031906,GSM4031907,GSM4031908,GSM4031909,GSM4031910,GSM4031911,GSM4031912,GSM4031913,GSM4031914,GSM4031915,GSM4031916,GSM4031917,GSM4031918,GSM4031919,GSM4031920,GSM4031921,GSM4031922,GSM4031923,GSM4031924,GSM4031925,GSM4031926,GSM4031927,GSM4031928,GSM4031929,GSM4031930,GSM4031931,GSM4031932,GSM4031933,GSM4031934,GSM4031935,GSM4031936,GSM4031937,GSM4031938,GSM4031939,GSM4031940,GSM4031941,GSM4031942,GSM4031943,GSM4031944,GSM4031945,GSM4031946,GSM4031947,GSM4031948,GSM4031949,GSM4031950,GSM4031951,GSM4031952,GSM4031953,GSM4031954,GSM4031955,GSM4031956,GSM4031957,GSM4031958,GSM4031959,GSM4031960,GSM4031961,GSM4031962,GSM4031963,GSM4031964,GSM4031965,GSM4031966,GSM4031967,GSM4031968,GSM4031969,GSM4031970,GSM4031971,GSM4031972,GSM4031973,GSM4031974,GSM4031975,GSM4031976,GSM4031977,GSM4031978,GSM4031979,GSM4031980,GSM4031981,GSM4031982,GSM4031983,GSM4031984,GSM4031985,GSM4031986,GSM4031987,GSM4031988,GSM4031989,GSM4031990,GSM4031991,GSM4031992,GSM4031993,GSM4031994,GSM4031995,GSM4031996,GSM4031997,GSM4031998,GSM4031999,GSM4032000,GSM4032001,GSM4032002,GSM4032003,GSM4032004,GSM4032005,GSM4032006,GSM4032007,GSM4032008,GSM4032009,GSM4032010,GSM4032011,GSM4032012,GSM4032013,GSM4032014,GSM4032015,GSM4032016,GSM4032017,GSM4032018,GSM4032019,GSM4032020,GSM4032021,GSM4032022,GSM4032023,GSM4032024,GSM4032025,GSM4032026,GSM4032027,GSM4032028,GSM4032029,GSM4032030,GSM4032031,GSM4032032,GSM4032033,GSM4032034,GSM4032035,GSM4032036,GSM4032037,GSM4032038,GSM4032039,GSM4032040,GSM4032041,GSM4032042,GSM4032043,GSM4032044,GSM4032045,GSM4032046,GSM4032047,GSM4032048,GSM4032049,GSM4032050,GSM4032051,GSM4032052,GSM4032053,GSM4032054,GSM4032055,GSM4032056,GSM4032057,GSM4032058,GSM4032059,GSM4032060,GSM4032061,GSM4032062,GSM4032063,GSM4032064,GSM4032065,GSM4032066,GSM4032067,GSM4032068,GSM4032069,GSM4032070,GSM4032071,GSM4032072,GSM4032073,GSM4032074,GSM4032075,GSM4032076,GSM4032077,GSM4032078,GSM4032079,GSM4032080,GSM4032081,GSM4032082,GSM4032083,GSM4032084,GSM4032085,GSM4032086,GSM4032087,GSM4032088,GSM4032089,GSM4032090,GSM4032091,GSM4032092,GSM4032093,GSM4032094,GSM4032095,GSM4032096,GSM4032097,GSM4032098,GSM4032099,GSM4032100,GSM4032101,GSM4032102,GSM4032103,GSM4032104,GSM4032105,GSM4032106,GSM4032107,GSM4032108,GSM4032109,GSM4032110,GSM4032111,GSM4032112,GSM4032113,GSM4032114,GSM4032115,GSM4032116,GSM4032117,GSM4032118,GSM4032119,GSM4032120,GSM4032121,GSM4032122,GSM4032123,GSM4032124,GSM4032125,GSM4032126,GSM4032127,GSM4032128,GSM4032129,GSM4032130,GSM4032131,GSM4032132,GSM4032133,GSM4032134,GSM4032135,GSM4032136,GSM4032137,GSM4032138,GSM4032139,GSM4032140,GSM4032141,GSM4032142,GSM4032143,GSM4032144,GSM4032145,GSM4032146,GSM4032147,GSM4032148,GSM4032149,GSM4032150,GSM4032151,GSM4032152,GSM4032153,GSM4032154,GSM4032155,GSM4032156,GSM4032157,GSM4032158,GSM4032159,GSM4032160,GSM4032161,GSM4032162,GSM4032163,GSM4032164,GSM4032165,GSM4032166,GSM4032167,GSM4032168,GSM4032169,GSM4032170,GSM4032171,GSM4032172,GSM4032173,GSM4032174,GSM4032175,GSM4032176,GSM4032177,GSM4032178,GSM4032179,GSM4032180,GSM4032181,GSM4032182,GSM4032183,GSM4032184,GSM4032185,GSM4032186,GSM4032187,GSM4032188,GSM4032189,GSM4032190,GSM4032191,GSM4032192,GSM4032193,GSM4032194,GSM4032195,GSM4032196,GSM4032197,GSM4032198,GSM4032199,GSM4032200,GSM4032201,GSM4032202,GSM4032203,GSM4032204,GSM4032205,GSM4032206,GSM4032207,GSM4032208,GSM4032209,GSM4032210,GSM4032211,GSM4032212,GSM4032213,GSM4032214,GSM4032215,GSM4032216,GSM4032217,GSM4032218,GSM4032219,GSM4032220,GSM4032221,GSM4032222,GSM4032223,GSM4032224,GSM4032225,GSM4032226,GSM4032227,GSM4032228,GSM4032229,GSM4032230,GSM4032231,GSM4032232,GSM4032233,GSM4032234,GSM4032235,GSM4032236,GSM4032237,GSM4032238,GSM4032239,GSM4032240,GSM4032241,GSM4032242,GSM4032243,GSM4032244,GSM4032245,GSM4032246,GSM4032247,GSM4032248,GSM4032249,GSM4032250,GSM4032251,GSM4032252,GSM4032253,GSM4032254,GSM4032255,GSM4032256,GSM4032257,GSM4032258,GSM4032259,GSM4032260,GSM4032261,GSM4032262,GSM4032263,GSM4032264,GSM4032265,GSM4032266,GSM4032267,GSM4032268,GSM4032269,GSM4032270,GSM4032271,GSM4032272,GSM4032273,GSM4032274,GSM4032275,GSM4032276,GSM4032277,GSM4032278,GSM4032279,GSM4032280,GSM4032281,GSM4032282,GSM4032283,GSM4032284,GSM4032285,GSM4032286,GSM4032287,GSM4032288,GSM4032289,GSM4032290,GSM4032291,GSM4032292,GSM4032293,GSM4032294,GSM4032295,GSM4032296,GSM4032297,GSM4032298,GSM4032299,GSM4032300,GSM4032301,GSM4032302,GSM4032303,GSM4032304,GSM4032305,GSM4032306,GSM4032307,GSM4032308,GSM4032309,GSM4032310,GSM4032311,GSM4032312,GSM4032313,GSM4032314,GSM4032315,GSM4032316,GSM4032317,GSM4032318,GSM4032319,GSM4032320,GSM4032321,GSM4032322,GSM4032323,GSM4032324,GSM4032325,GSM4032326,GSM4032327,GSM4032328,GSM4032329,GSM4032330,GSM4032331,GSM4032332,GSM4032333,GSM4032334,GSM4032335,GSM4032336,GSM4032337,GSM4032338,GSM4032339,GSM4032340,GSM4032341,GSM4032342,GSM4032343,GSM4032344,GSM4032345,GSM4032346,GSM4032347,GSM4032348,GSM4032349,GSM4032350,GSM4032351,GSM4032352,GSM4032353,GSM4032354,GSM4032355,GSM4032356,GSM4032357,GSM4032358,GSM4032359,GSM4032360,GSM4032361,GSM4032362,GSM4032363,GSM4032364,GSM4032365,GSM4032366,GSM4032367,GSM4032368,GSM4032369,GSM4032370,GSM4032371,GSM4032372,GSM4032373,GSM4032374,GSM4032375,GSM4032376,GSM4032377,GSM4032378,GSM4032379,GSM4032380,GSM4032381,GSM4032382,GSM4032383,GSM4032384,GSM4032385,GSM4032386,GSM4032387,GSM4032388,GSM4032389,GSM4032390,GSM4032391,GSM4032392,GSM4032393,GSM4032394,GSM4032395,GSM4032396,GSM4032397,GSM4032398,GSM4032399,GSM4032400,GSM4032401,GSM4032402,GSM4032403,GSM4032404,GSM4032405,GSM4032406,GSM4032407,GSM4032408,GSM4032409,GSM4032410,GSM4032411,GSM4032412,GSM4032413,GSM4032414,GSM4032415,GSM4032416,GSM4032417,GSM4032418,GSM4032419,GSM4032420,GSM4032421,GSM4032422,GSM4032423,GSM4032424,GSM4032425,GSM4032426,GSM4032427,GSM4032428,GSM4032429,GSM4032430,GSM4032431,GSM4032432,GSM4032433,GSM4032434,GSM4032435,GSM4032436,GSM4032437,GSM4032438,GSM4032439,GSM4032440,GSM4032441,GSM4032442,GSM4032443,GSM4032444,GSM4032445,GSM4032446,GSM4032447,GSM4032448,GSM4032449,GSM4032450,GSM4032451,GSM4032452,GSM4032453,GSM4032454,GSM4032455,GSM4032456,GSM4032457,GSM4032458,GSM4032459,GSM4032460,GSM4032461,GSM4032462,GSM4032463,GSM4032464,GSM4032465,GSM4032466,GSM4032467,GSM4032468,GSM4032469,GSM4032470,GSM4032471,GSM4032472,GSM4032473,GSM4032474,GSM4032475,GSM4032476,GSM4032477,GSM4032478,GSM4032479,GSM4032480,GSM4032481,GSM4032482,GSM4032483,GSM4032484,GSM4032485,GSM4032486,GSM4032487,GSM4032488,GSM4032489,GSM4032490,GSM4032491,GSM4032492,GSM4032493,GSM4032494,GSM4032495,GSM4032496,GSM4032497,GSM4032498,GSM4032499,GSM4032500,GSM4032501,GSM4032502,GSM4032503,GSM4032504,GSM4032505,GSM4032506,GSM4032507,GSM4032508,GSM4032509,GSM4032510,GSM4032511,GSM4032512,GSM4032513,GSM4032514,GSM4032515,GSM4032516,GSM4032517,GSM4032518,GSM4032519,GSM4032520,GSM4032521,GSM4032522,GSM4032523,GSM4032524,GSM4032525,GSM4032526,GSM4032527,GSM4032528,GSM4032529,GSM4032530,GSM4032531,GSM4032532,GSM4032533,GSM4032534,GSM4032535,GSM4032536,GSM4032537,GSM4032538,GSM4032539,GSM4032540,GSM4032541,GSM4032542,GSM4032543,GSM4032544,GSM4032545,GSM4032546,GSM4032547,GSM4032548,GSM4032549,GSM4032550,GSM4032551,GSM4032552,GSM4032553,GSM4032554,GSM4032555,GSM4032556,GSM4032557,GSM4032558,GSM4032559,GSM4032560,GSM4032561,GSM4032562,GSM4032563,GSM4032564,GSM4032565,GSM4032566,GSM4032567,GSM4032568,GSM4032569,GSM4032570,GSM4032571,GSM4032572,GSM4032573,GSM4032574,GSM4032575,GSM4032576,GSM4032577,GSM4032578,GSM4032579,GSM4032580,GSM4032581,GSM4032582,GSM4032583,GSM4032584,GSM4032585,GSM4032586,GSM4032587,GSM4032588,GSM4032589,GSM4032590,GSM4032591,GSM4032592,GSM4032593,GSM4032594,GSM4032595,GSM4032596,GSM4032597,GSM4032598,GSM4032599,GSM4032600,GSM4032601,GSM4032602,GSM4032603,GSM4032604,GSM4032605,GSM4032606,GSM4032607,GSM4032608,GSM4032609,GSM4032610,GSM4032611,GSM4032612,GSM4032613,GSM4032614,GSM4032615,GSM4032616,GSM4032617,GSM4032618,GSM4032619,GSM4032620,GSM4032621,GSM4032622,GSM4032623,GSM4032624,GSM4032625,GSM4032626,GSM4032627,GSM4032628,GSM4032629,GSM4032630,GSM4032631,GSM4032632,GSM4032633,GSM4032634,GSM4032635,GSM4032636,GSM4032637,GSM4032638,GSM4032639,GSM4032640,GSM4032641,GSM4032642,GSM4032643,GSM4032644,GSM4032645,GSM4032646,GSM4032647,GSM4032648,GSM4032649,GSM4032650,GSM4032651,GSM4032652,GSM4032653,GSM4032654,GSM4032655,GSM4032656,GSM4032657,GSM4032658,GSM4032659,GSM4032660,GSM4032661,GSM4032662,GSM4032663,GSM4032664,GSM4032665,GSM4032666,GSM4032667,GSM4032668,GSM4032669,GSM4032670,GSM4032671,GSM4032672,GSM4032673,GSM4032674,GSM4032675,GSM4032676,GSM4032677,GSM4032678,GSM4032679,GSM4032680,GSM4032681,GSM4032682,GSM4032683,GSM4032684,GSM4032685,GSM4032686,GSM4032687,GSM4032688,GSM4032689,GSM4032690,GSM4032691,GSM4032692,GSM4032693,GSM4032694,GSM4032695,GSM4032696,GSM4032697,GSM4032698,GSM4032699,GSM4032700,GSM4032701,GSM4032702,GSM4032703,GSM4032704,GSM4032705,GSM4032706,GSM4032707,GSM4032708,GSM4032709,GSM4032710,GSM4032711,GSM4032712,GSM4032713,GSM4032714,GSM4032715,GSM4032716,GSM4032717,GSM4032718,GSM4032719,GSM4032720,GSM4032721,GSM4032722,GSM4032723,GSM4032724,GSM4032725,GSM4032726,GSM4032727,GSM4032728,GSM4032729,GSM4032730,GSM4032731,GSM4032732,GSM4032733,GSM4032734,GSM4032735,GSM4032736,GSM4032737,GSM4032738,GSM4032739,GSM4032740,GSM4032741,GSM4032742,GSM4032743,GSM4032744,GSM4032745,GSM4032746,GSM4032747,GSM4032748,GSM4032749,GSM4032750,GSM4032751,GSM4032752,GSM4032753,GSM4032754,GSM4032755,GSM4032756,GSM4032757,GSM4032758,GSM4032759,GSM4032760,GSM4032761,GSM4032762,GSM4032763,GSM4032764,GSM4032765,GSM4032766,GSM4032767,GSM4032768,GSM4032769,GSM4032770,GSM4032771,GSM4032772,GSM4032773,GSM4032774,GSM4032775,GSM4032776,GSM4032777,GSM4032778,GSM4032779,GSM4032780,GSM4032781,GSM4032782,GSM4032783,GSM4032784,GSM4032785,GSM4032786,GSM4032787,GSM4032788,GSM4032789,GSM4032790,GSM4032791,GSM4032792,GSM4032793,GSM4032794,GSM4032795,GSM4032796,GSM4032797,GSM4032798,GSM4032799,GSM4032800,GSM4032801,GSM4032802,GSM4032803,GSM4032804,GSM4032805,GSM4032806,GSM4032807,GSM4032808,GSM4032809,GSM4032810,GSM4032811,GSM4032812,GSM4032813,GSM4032814,GSM4032815,GSM4032816,GSM4032817,GSM4032818,GSM4032819,GSM4032820,GSM4032821,GSM4032822,GSM4032823,GSM4032824,GSM4032825,GSM4032826,GSM4032827,GSM4032828,GSM4032829,GSM4032830,GSM4032831,GSM4032832,GSM4032833,GSM4032834,GSM4032835,GSM4032836,GSM4032837,GSM4032838,GSM4032839,GSM4032840,GSM4032841,GSM4032842,GSM4032843,GSM4032844,GSM4032845,GSM4032846,GSM4032847,GSM4032848,GSM4032849,GSM4032850,GSM4032851,GSM4032852,GSM4032853,GSM4032854,GSM4032855,GSM4032856,GSM4032857,GSM4032858,GSM4032859,GSM4032860,GSM4032861,GSM4032862,GSM4032863,GSM4032864,GSM4032865,GSM4032866,GSM4032867,GSM4032868,GSM4032869,GSM4032870,GSM4032871,GSM4032872,GSM4032873,GSM4032874,GSM4032875,GSM4032876,GSM4032877,GSM4032878,GSM4032879,GSM4032880,GSM4032881,GSM4032882,GSM4032883,GSM4032884,GSM4032885,GSM4032886,GSM4032887,GSM4032888,GSM4032889,GSM4032890,GSM4032891,GSM4032892,GSM4032893,GSM4032894,GSM4032895,GSM4032896,GSM4032897,GSM4032898,GSM4032899,GSM4032900,GSM4032901,GSM4032902,GSM4032903,GSM4032904,GSM4032905,GSM4032906,GSM4032907,GSM4032908,GSM4032909,GSM4032910,GSM4032911,GSM4032912,GSM4032913,GSM4032914,GSM4032915,GSM4032916,GSM4032917,GSM4032918,GSM4032919,GSM4032920,GSM4032921,GSM4032922,GSM4032923,GSM4032924,GSM4032925,GSM4032926,GSM4032927,GSM4032928,GSM4032929,GSM4032930,GSM4032931,GSM4032932,GSM4032933,GSM4032934,GSM4032935,GSM4032936,GSM4032937,GSM4032938,GSM4032939,GSM4032940,GSM4032941,GSM4032942,GSM4032943,GSM4032944,GSM4032945,GSM4032946,GSM4032947,GSM4032948,GSM4032949,GSM4032950,GSM4032951,GSM4032952,GSM4032953,GSM4032954,GSM4032955,GSM4032956,GSM4032957,GSM4032958,GSM4032959,GSM4032960,GSM4032961,GSM4032962,GSM4032963,GSM4032964,GSM4032965,GSM4032966,GSM4032967,GSM4032968,GSM4032969,GSM4032970,GSM4032971,GSM4032972,GSM4032973,GSM4032974,GSM4032975,GSM4032976,GSM4032977,GSM4032978,GSM4032979,GSM4032980,GSM4032981,GSM4032982,GSM4032983,GSM4032984,GSM4032985,GSM4032986,GSM4032987,GSM4032988,GSM4032989,GSM4032990,GSM4032991,GSM4032992,GSM4032993,GSM4032994,GSM4032995,GSM4032996,GSM4032997,GSM4032998,GSM4032999,GSM4033000,GSM4033001,GSM4033002,GSM4033003,GSM4033004,GSM4033005,GSM4033006,GSM4033007,GSM4033008,GSM4033009,GSM4033010,GSM4033011,GSM4033012,GSM4033013,GSM4033014,GSM4033015,GSM4033016,GSM4033017,GSM4033018,GSM4033019,GSM4033020,GSM4033021,GSM4033022,GSM4033023,GSM4033024,GSM4033025,GSM4033026,GSM4033027,GSM4033028,GSM4033029,GSM4033030,GSM4033031,GSM4033032,GSM4033033,GSM4033034,GSM4033035,GSM4033036,GSM4033037,GSM4033038,GSM4033039,GSM4033040,GSM4033041,GSM4033042,GSM4033043,GSM4033044,GSM4033045,GSM4033046,GSM4033047,GSM4033048,GSM4033049,GSM4033050,GSM4033051,GSM4033052,GSM4033053,GSM4033054,GSM4033055,GSM4033056,GSM4033057,GSM4033058,GSM4033059,GSM4033060,GSM4033061,GSM4033062,GSM4033063,GSM4033064,GSM4033065,GSM4033066,GSM4033067,GSM4033068,GSM4033069,GSM4033070,GSM4033071,GSM4033072,GSM4033073,GSM4033074,GSM4033075,GSM4033076,GSM4033077,GSM4033078,GSM4033079,GSM4033080,GSM4033081,GSM4033082,GSM4033083,GSM4033084,GSM4033085,GSM4033086,GSM4033087,GSM4033088,GSM4033089,GSM4033090,GSM4033091,GSM4033092,GSM4033093,GSM4033094,GSM4033095,GSM4033096,GSM4033097,GSM4033098,GSM4033099,GSM4033100,GSM4033101,GSM4033102,GSM4033103,GSM4033104,GSM4033105,GSM4033106,GSM4033107,GSM4033108,GSM4033109,GSM4033110,GSM4033111,GSM4033112,GSM4033113,GSM4033114,GSM4033115,GSM4033116,GSM4033117,GSM4033118,GSM4033119,GSM4033120,GSM4033121,GSM4033122,GSM4033123,GSM4033124,GSM4033125,GSM4033126,GSM4033127,GSM4033128,GSM4033129,GSM4033130,GSM4033131,GSM4033132,GSM4033133,GSM4033134,GSM4033135,GSM4033136,GSM4033137,GSM4033138,GSM4033139,GSM4033140,GSM4033141,GSM4033142,GSM4033143,GSM4033144,GSM4033145,GSM4033146,GSM4033147,GSM4033148,GSM4033149,GSM4033150,GSM4033151,GSM4033152,GSM4033153,GSM4033154,GSM4033155,GSM4033156,GSM4033157,GSM4033158,GSM4033159,GSM4033160,GSM4033161,GSM4033162,GSM4033163,GSM4033164,GSM4033165,GSM4033166,GSM4033167,GSM4033168,GSM4033169,GSM4033170,GSM4033171,GSM4033172,GSM4033173,GSM4033174,GSM4033175,GSM4033176,GSM4033177,GSM4033178,GSM4033179,GSM4033180,GSM4033181,GSM4033182,GSM4033183,GSM4033184,GSM4033185,GSM4033186,GSM4033187,GSM4033188,GSM4033189,GSM4033190,GSM4033191,GSM4033192,GSM4033193,GSM4033194,GSM4033195,GSM4033196,GSM4033197,GSM4033198,GSM4033199,GSM4033200,GSM4033201,GSM4033202,GSM4033203,GSM4033204,GSM4033205,GSM4033206,GSM4033207,GSM4033208,GSM4033209,GSM4033210,GSM4033211,GSM4033212,GSM4033213,GSM4033214,GSM4033215,GSM4033216,GSM4033217,GSM4033218,GSM4033219,GSM4033220,GSM4033221,GSM4033222,GSM4033223,GSM4033224,GSM4033225,GSM4033226,GSM4033227,GSM4033228,GSM4033229,GSM4033230,GSM4033231,GSM4033232,GSM4033233,GSM4033234,GSM4033235,GSM4033236,GSM4033237,GSM4033238,GSM4033239,GSM4033240,GSM4033241,GSM4033242,GSM4033243,GSM4033244,GSM4033245,GSM4033246,GSM4033247,GSM4033248,GSM4033249,GSM4033250,GSM4033251,GSM4033252,GSM4033253,GSM4033254,GSM4033255,GSM4033256,GSM4033257,GSM4033258,GSM4033259,GSM4033260,GSM4033261,GSM4033262,GSM4033263,GSM4033264,GSM4033265,GSM4033266,GSM4033267,GSM4033268,GSM4033269,GSM4033270,GSM4033271,GSM4033272,GSM4033273,GSM4033274,GSM4033275,GSM4033276,GSM4033277,GSM4033278,GSM4033279,GSM4033280,GSM4033281,GSM4033282,GSM4033283,GSM4033284,GSM4033285,GSM4033286,GSM4033287,GSM4033288,GSM4033289,GSM4033290,GSM4033291,GSM4033292,GSM4033293,GSM4033294,GSM4033295,GSM4033296,GSM4033297,GSM4033298,GSM4033299,GSM4033300,GSM4033301,GSM4033302,GSM4033303,GSM4033304,GSM4033305,GSM4033306,GSM4033307,GSM4033308,GSM4033309,GSM4033310,GSM4033311,GSM4033312,GSM4033313,GSM4033314,GSM4033315,GSM4033316,GSM4033317,GSM4033318,GSM4033319,GSM4033320,GSM4033321,GSM4033322,GSM4033323,GSM4033324,GSM4033325,GSM4033326,GSM4033327,GSM4033328,GSM4033329,GSM4033330,GSM4033331,GSM4033332,GSM4033333,GSM4033334,GSM4033335,GSM4033336,GSM4033337,GSM4033338,GSM4033339,GSM4033340,GSM4033341,GSM4033342,GSM4033343,GSM4033344,GSM4033345,GSM4033346,GSM4033347,GSM4033348,GSM4033349,GSM4033350,GSM4033351,GSM4033352,GSM4033353,GSM4033354,GSM4033355,GSM4033356,GSM4033357,GSM4033358,GSM4033359,GSM4033360,GSM4033361,GSM4033362,GSM4033363,GSM4033364,GSM4033365,GSM4033366,GSM4033367,GSM4033368,GSM4033369,GSM4033370,GSM4033371,GSM4033372,GSM4033373,GSM4033374,GSM4033375,GSM4033376,GSM4033377,GSM4033378,GSM4033379,GSM4033380,GSM4033381,GSM4033382,GSM4033383,GSM4033384,GSM4033385,GSM4033386,GSM4033387,GSM4033388,GSM4033389,GSM4033390,GSM4033391,GSM4033392,GSM4033393,GSM4033394,GSM4033395,GSM4033396,GSM4033397,GSM4033398,GSM4033399,GSM4033400,GSM4033401,GSM4033402,GSM4033403,GSM4033404,GSM4033405,GSM4033406,GSM4033407,GSM4033408,GSM4033409,GSM4033410,GSM4033411,GSM4033412,GSM4033413,GSM4033414,GSM4033415,GSM4033416,GSM4033417,GSM4033418,GSM4033419,GSM4033420,GSM4033421,GSM4033422,GSM4033423,GSM4033424,GSM4033425,GSM4033426,GSM4033427,GSM4033428,GSM4033429,GSM4033430,GSM4033431,GSM4033432,GSM4033433,GSM4033434,GSM4033435,GSM4033436,GSM4033437,GSM4033438,GSM4033439,GSM4033440,GSM4033441,GSM4033442,GSM4033443,GSM4033444,GSM4033445,GSM4033446,GSM4033447,GSM4033448,GSM4033449,GSM4033450,GSM4033451,GSM4033452,GSM4033453,GSM4033454,GSM4033455,GSM4033456,GSM4033457,GSM4033458,GSM4033459,GSM4033460,GSM4033461,GSM4033462,GSM4033463,GSM4033464,GSM4033465,GSM4033466,GSM4033467,GSM4033468,GSM4033469,GSM4033470,GSM4033471,GSM4033472,GSM4033473,GSM4033474,GSM4033475,GSM4033476,GSM4033477,GSM4033478,GSM4033479,GSM4033480,GSM4033481,GSM4033482,GSM4033483,GSM4033484,GSM4033485,GSM4033486,GSM4033487,GSM4033488,GSM4033489,GSM4033490,GSM4033491,GSM4033492,GSM4033493,GSM4033494,GSM4033495,GSM4033496,GSM4033497,GSM4033498,GSM4033499,GSM4033500,GSM4033501,GSM4033502,GSM4033503,GSM4033504,GSM4033505,GSM4033506,GSM4033507,GSM4033508,GSM4033509,GSM4033510,GSM4033511,GSM4033512,GSM4033513,GSM4033514,GSM4033515,GSM4033516,GSM4033517,GSM4033518,GSM4033519,GSM4033520,GSM4033521,GSM4033522,GSM4033523,GSM4033524,GSM4033525,GSM4033526,GSM4033527,GSM4033528,GSM4033529,GSM4033530,GSM4033531,GSM4033532,GSM4033533,GSM4033534,GSM4033535,GSM4033536,GSM4033537,GSM4033538,GSM4033539,GSM4033540,GSM4033541,GSM4033542,GSM4033543,GSM4033544,GSM4033545,GSM4033546,GSM4033547,GSM4033548,GSM4033549,GSM4033550,GSM4033551,GSM4033552,GSM4033553,GSM4033554,GSM4033555,GSM4033556,GSM4033557,GSM4033558,GSM4033559,GSM4033560,GSM4033561,GSM4033562,GSM4033563,GSM4033564,GSM4033565,GSM4033566,GSM4033567,GSM4033568,GSM4033569,GSM4033570,GSM4033571,GSM4033572,GSM4033573,GSM4033574,GSM4033575,GSM4033576,GSM4033577,GSM4033578,GSM4033579,GSM4033580,GSM4033581,GSM4033582,GSM4033583,GSM4033584,GSM4033585,GSM4033586,GSM4033587,GSM4033588,GSM4033589,GSM4033590,GSM4033591,GSM4033592,GSM4033593,GSM4033594,GSM4033595,GSM4033596,GSM4033597,GSM4033598,GSM4033599,GSM4033600,GSM4033601,GSM4033602,GSM4033603,GSM4033604,GSM4033605,GSM4033606,GSM4033607,GSM4033608,GSM4033609,GSM4033610,GSM4033611,GSM4033612,GSM4033613,GSM4033614,GSM4033615,GSM4033616,GSM4033617,GSM4033618,GSM4033619,GSM4033620,GSM4033621,GSM4033622,GSM4033623,GSM4033624,GSM4033625,GSM4033626,GSM4033627,GSM4033628,GSM4033629,GSM4033630,GSM4033631,GSM4033632,GSM4033633,GSM4033634,GSM4033635,GSM4033636,GSM4033637,GSM4033638,GSM4033639,GSM4033640,GSM4033641,GSM4033642,GSM4033643,GSM4033644,GSM4033645,GSM4033646,GSM4033647,GSM4033648,GSM4033649,GSM4033650,GSM4033651,GSM4033652,GSM4033653,GSM4033654,GSM4033655,GSM4033656,GSM4033657,GSM4033658,GSM4033659,GSM4033660,GSM4033661,GSM4033662,GSM4033663,GSM4033664,GSM4033665,GSM4033666,GSM4033667,GSM4033668,GSM4033669,GSM4033670,GSM4033671,GSM4033672,GSM4033673,GSM4033674,GSM4033675,GSM4033676,GSM4033677,GSM4033678,GSM4033679,GSM4033680,GSM4033681,GSM4033682,GSM4033683,GSM4033684,GSM4033685,GSM4033686,GSM4033687,GSM4033688,GSM4033689,GSM4033690,GSM4033691,GSM4033692,GSM4033693,GSM4033694,GSM4033695,GSM4033696,GSM4033697,GSM4033698,GSM4033699,GSM4033700,GSM4033701,GSM4033702,GSM4033703,GSM4033704,GSM4033705,GSM4033706,GSM4033707,GSM4033708,GSM4033709,GSM4033710,GSM4033711,GSM4033712,GSM4033713,GSM4033714,GSM4033715,GSM4033716,GSM4033717,GSM4033718,GSM4033719,GSM4033720,GSM4033721,GSM4033722,GSM4033723,GSM4033724,GSM4033725,GSM4033726,GSM4033727,GSM4033728,GSM4033729,GSM4033730,GSM4033731,GSM4033732,GSM4033733,GSM4033734,GSM4033735,GSM4033736,GSM4033737,GSM4033738,GSM4033739,GSM4033740,GSM4033741,GSM4033742,GSM4033743,GSM4033744,GSM4033745,GSM4033746,GSM4033747,GSM4033748,GSM4033749,GSM4033750,GSM4033751,GSM4033752,GSM4033753,GSM4033754,GSM4033755,GSM4033756,GSM4033757,GSM4033758,GSM4033759,GSM4033760,GSM4033761,GSM4033762,GSM4033763,GSM4033764,GSM4033765,GSM4033766,GSM4033767,GSM4033768,GSM4033769,GSM4033770,GSM4033771,GSM4033772,GSM4033773,GSM4033774,GSM4033775,GSM4033776,GSM4033777,GSM4033778,GSM4033779,GSM4033780,GSM4033781,GSM4033782,GSM4033783,GSM4033784,GSM4033785,GSM4033786,GSM4033787,GSM4033788,GSM4033789,GSM4033790,GSM4033791,GSM4033792,GSM4033793,GSM4033794,GSM4033795,GSM4033796,GSM4033797,GSM4033798,GSM4033799,GSM4033800,GSM4033801,GSM4033802,GSM4033803,GSM4033804,GSM4033805,GSM4033806,GSM4033807,GSM4033808,GSM4033809,GSM4033810,GSM4033811,GSM4033812,GSM4033813,GSM4033814,GSM4033815,GSM4033816,GSM4033817,GSM4033818,GSM4033819,GSM4033820,GSM4033821,GSM4033822,GSM4033823,GSM4033824,GSM4033825,GSM4033826,GSM4033827,GSM4033828,GSM4033829,GSM4033830,GSM4033831,GSM4033832,GSM4033833,GSM4033834,GSM4033835,GSM4033836,GSM4033837,GSM4033838,GSM4033839,GSM4033840,GSM4033841,GSM4033842,GSM4033843,GSM4033844,GSM4033845,GSM4033846,GSM4033847,GSM4033848,GSM4033849,GSM4033850,GSM4033851,GSM4033852,GSM4033853,GSM4033854,GSM4033855,GSM4033856,GSM4033857,GSM4033858,GSM4033859,GSM4033860,GSM4033861,GSM4033862,GSM4033863,GSM4033864,GSM4033865,GSM4033866,GSM4033867,GSM4033868,GSM4033869,GSM4033870,GSM4033871,GSM4033872,GSM4033873,GSM4033874,GSM4033875,GSM4033876,GSM4033877,GSM4033878,GSM4033879,GSM4033880,GSM4033881,GSM4033882,GSM4033883,GSM4033884,GSM4033885,GSM4033886,GSM4033887,GSM4033888,GSM4033889,GSM4033890,GSM4033891,GSM4033892,GSM4033893,GSM4033894,GSM4033895,GSM4033896,GSM4033897,GSM4033898,GSM4033899,GSM4033900,GSM4033901,GSM4033902,GSM4033903,GSM4033904,GSM4033905,GSM4033906,GSM4033907,GSM4033908,GSM4033909,GSM4033910,GSM4033911,GSM4033912,GSM4033913,GSM4033914,GSM4033915,GSM4033916,GSM4033917,GSM4033918,GSM4033919,GSM4033920,GSM4033921,GSM4033922,GSM4033923,GSM4033924,GSM4033925,GSM4033926,GSM4033927,GSM4033928,GSM4033929,GSM4033930,GSM4033931,GSM4033932,GSM4033933,GSM4033934,GSM4033935,GSM4033936,GSM4033937,GSM4033938,GSM4033939,GSM4033940,GSM4033941,GSM4033942,GSM4033943,GSM4033944,GSM4033945,GSM4033946,GSM4033947,GSM4033948,GSM4033949,GSM4033950,GSM4033951,GSM4033952,GSM4033953,GSM4033954,GSM4033955,GSM4033956,GSM4033957,GSM4033958,GSM4033959,GSM4033960,GSM4033961,GSM4033962,GSM4033963,GSM4033964,GSM4033965,GSM4033966,GSM4033967,GSM4033968,GSM4033969,GSM4033970,GSM4033971,GSM4033972,GSM4033973,GSM4033974,GSM4033975,GSM4033976,GSM4033977,GSM4033978,GSM4033979,GSM4033980,GSM4033981,GSM4033982,GSM4033983,GSM4033984,GSM4033985,GSM4033986,GSM4033987,GSM4033988,GSM4033989,GSM4033990,GSM4033991,GSM4033992,GSM4033993,GSM4033994,GSM4033995,GSM4033996,GSM4033997,GSM4033998,GSM4033999,GSM4034000,GSM4034001,GSM4034002,GSM4034003,GSM4034004,GSM4034005,GSM4034006,GSM4034007,GSM4034008,GSM4034009,GSM4034010,GSM4034011,GSM4034012,GSM4034013,GSM4034014,GSM4034015,GSM4034016,GSM4034017,GSM4034018,GSM4034019,GSM4034020,GSM4034021,GSM4034022,GSM4034023,GSM4034024,GSM4034025,GSM4034026,GSM4034027,GSM4034028,GSM4034029,GSM4034030,GSM4034031,GSM4034032,GSM4034033,GSM4034034,GSM4034035,GSM4034036,GSM4034037,GSM4034038,GSM4034039,GSM4034040,GSM4034041,GSM4034042,GSM4034043,GSM4034044,GSM4034045,GSM4034046,GSM4034047,GSM4034048,GSM4034049,GSM4034050,GSM4034051,GSM4034052,GSM4034053,GSM4034054,GSM4034055,GSM4034056,GSM4034057,GSM4034058,GSM4034059,GSM4034060,GSM4034061,GSM4034062,GSM4034063,GSM4034064,GSM4034065,GSM4034066,GSM4034067,GSM4034068,GSM4034069,GSM4034070,GSM4034071,GSM4034072,GSM4034073,GSM4034074,GSM4034075,GSM4034076,GSM4034077,GSM4034078,GSM4034079,GSM4034080,GSM4034081,GSM4034082,GSM4034083,GSM4034084,GSM4034085,GSM4034086,GSM4034087,GSM4034088,GSM4034089,GSM4034090,GSM4034091,GSM4034092,GSM4034093,GSM4034094,GSM4034095,GSM4034096,GSM4034097,GSM4034098,GSM4034099,GSM4034100,GSM4034101,GSM4034102,GSM4034103,GSM4034104,GSM4034105,GSM4034106,GSM4034107,GSM4034108,GSM4034109,GSM4034110,GSM4034111,GSM4034112,GSM4034113,GSM4034114,GSM4034115,GSM4034116,GSM4034117,GSM4034118,GSM4034119,GSM4034120,GSM4034121,GSM4034122,GSM4034123,GSM4034124,GSM4034125,GSM4034126,GSM4034127,GSM4034128,GSM4034129,GSM4034130,GSM4034131,GSM4034132,GSM4034133,GSM4034134,GSM4034135,GSM4034136,GSM4034137,GSM4034138,GSM4034139,GSM4034140,GSM4034141,GSM4034142,GSM4034143,GSM4034144,GSM4034145,GSM4034146,GSM4034147,GSM4034148,GSM4034149,GSM4034150,GSM4034151,GSM4034152,GSM4034153,GSM4034154,GSM4034155,GSM4034156,GSM4034157,GSM4034158,GSM4034159,GSM4034160,GSM4034161,GSM4034162,GSM4034163,GSM4034164,GSM4034165,GSM4034166,GSM4034167,GSM4034168,GSM4034169,GSM4034170,GSM4034171,GSM4034172,GSM4034173,GSM4034175,GSM4034176,GSM4034178,GSM4034180,GSM4034181,GSM4034183,GSM4034185,GSM4034187,GSM4034188,GSM4034189,GSM4034190,GSM4034191,GSM4034192,GSM4034193,GSM4034194,GSM4034195,GSM4034196,GSM4034197,GSM4034198,GSM4034199,GSM4034200,GSM4034201,GSM4034202,GSM4034203,GSM4034204,GSM4034205,GSM4034206,GSM4034207,GSM4034208,GSM4034209,GSM4034210,GSM4034211,GSM4034212,GSM4034213,GSM4034214,GSM4034215,GSM4034216,GSM4034217,GSM4034218,GSM4034219,GSM4034220,GSM4034221,GSM4034222,GSM4034223,GSM4034224,GSM4034225,GSM4034226,GSM4034227,GSM4034228,GSM4034229,GSM4034230,GSM4034231,GSM4034232,GSM4034233,GSM4034234,GSM4034235,GSM4034236,GSM4034237,GSM4034238,GSM4034239,GSM4034240,GSM4034241,GSM4034242,GSM4034243,GSM4034244,GSM4034245,GSM4034246,GSM4034247,GSM4034248,GSM4034249,GSM4034250,GSM4034251,GSM4034252,GSM4034253,GSM4034254,GSM4034255,GSM4034256,GSM4034257,GSM4034258,GSM4034259,GSM4034260,GSM4034261,GSM4034262,GSM4034263,GSM4034264,GSM4034265,GSM4034266,GSM4034267,GSM4034268,GSM4034269,GSM4034270,GSM4034271,GSM4034272,GSM4034273,GSM4034274,GSM4034275,GSM4034276,GSM4034277,GSM4034278,GSM4034279,GSM4034280,GSM4034281,GSM4034282,GSM4034283,GSM4034284,GSM4034285,GSM4034286,GSM4034287,GSM4034288,GSM4034289,GSM4034290,GSM4034291,GSM4034292,GSM4034293,GSM4034294,GSM4034295,GSM4034296,GSM4034297,GSM4034298,GSM4034299,GSM4034300,GSM4034301,GSM4034302,GSM4034303,GSM4034304,GSM4034305,GSM4034306,GSM4034307,GSM4034308,GSM4034309,GSM4034310,GSM4034311,GSM4034312,GSM4034313,GSM4034314,GSM4034315,GSM4034316,GSM4034317,GSM4034318,GSM4034319,GSM4034320,GSM4034321,GSM4034322,GSM4034323,GSM4034324,GSM4034325,GSM4034326,GSM4034327,GSM4034328,GSM4034329,GSM4034330,GSM4034331,GSM4034332,GSM4034333,GSM4034334,GSM4034335,GSM4034336,GSM4034337,GSM4034338,GSM4034339,GSM4034340,GSM4034341,GSM4034342,GSM4034343,GSM4034344,GSM4034345,GSM4034346,GSM4034347,GSM4034348,GSM4034349,GSM4034350,GSM4034351,GSM4034352,GSM4034353,GSM4034354,GSM4034355,GSM4034356,GSM4034357,GSM4034358,GSM4034359,GSM4034360,GSM4034361,GSM4034362,GSM4034363,GSM4034364,GSM4034365,GSM4034366,GSM4034367,GSM4034368,GSM4034369,GSM4034370,GSM4034371,GSM4034372,GSM4034373,GSM4034374,GSM4034375,GSM4034376,GSM4034377,GSM4034378,GSM4034379,GSM4034380,GSM4034381,GSM4034382,GSM4034383,GSM4034384,GSM4034385,GSM4034386,GSM4034387,GSM4034388,GSM4034389,GSM4034390,GSM4034391,GSM4034392,GSM4034393,GSM4034394,GSM4034395,GSM4034396,GSM4034397,GSM4034398,GSM4034399,GSM4034400,GSM4034401,GSM4034402,GSM4034403,GSM4034404,GSM4034405,GSM4034406,GSM4034407,GSM4034408,GSM4034409,GSM4034410,GSM4034411,GSM4034412,GSM4034413,GSM4034414,GSM4034415,GSM4034416,GSM4034417,GSM4034418,GSM4034419,GSM4034420,GSM4034421,GSM4034422,GSM4034423,GSM4034424,GSM4034425,GSM4034426,GSM4034427,GSM4034428,GSM4034429,GSM4034430,GSM4034431,GSM4034432,GSM4034433,GSM4034434,GSM4034435,GSM4034436,GSM4034437,GSM4034438,GSM4034439,GSM4034440,GSM4034441,GSM4034442,GSM4034443,GSM4034444,GSM4034445,GSM4034446,GSM4034447,GSM4034448,GSM4034449,GSM4034450,GSM4034451,GSM4034452,GSM4034453,GSM4034454,GSM4034455,GSM4034456,GSM4034457,GSM4034458,GSM4034459,GSM4034460,GSM4034461,GSM4034462,GSM4034463,GSM4034464,GSM4034465,GSM4034466,GSM4034467,GSM4034468,GSM4034469,GSM4034470,GSM4034471,GSM4034472,GSM4034473,GSM4034474,GSM4034475,GSM4034476,GSM4034477,GSM4034478,GSM4034479,GSM4034480,GSM4034481,GSM4034482,GSM4034483,GSM4034484,GSM4034485,GSM4034486,GSM4034487,GSM4034488,GSM4034489,GSM4034490,GSM4034491,GSM4034492,GSM4034493,GSM4034494,GSM4034495,GSM4034496,GSM4034497,GSM4034498,GSM4034499,GSM4034500,GSM4034501,GSM4034502,GSM4034503,GSM4034504,GSM4034505,GSM4034506,GSM4034507,GSM4034508,GSM4034509,GSM4034510,GSM4034511,GSM4034512,GSM4034513,GSM4034514,GSM4034515,GSM4034516,GSM4034517,GSM4034518,GSM4034519,GSM4034520,GSM4034521,GSM4034522,GSM4034523,GSM4034524,GSM4034525,GSM4034526,GSM4034527,GSM4034528,GSM4034529,GSM4034530,GSM4034531,GSM4034532,GSM4034533,GSM4034534,GSM4034535,GSM4034536,GSM4034537,GSM4034538,GSM4034539,GSM4034540,GSM4034541,GSM4034542,GSM4034543,GSM4034544,GSM4034545,GSM4034546,GSM4034547,GSM4034548,GSM4034549,GSM4034550,GSM4034551,GSM4034552,GSM4034553,GSM4034554,GSM4034555,GSM4034556,GSM4034557,GSM4034558,GSM4034559,GSM4034560,GSM4034561,GSM4034562,GSM4034563,GSM4034564,GSM4034565,GSM4034566,GSM4034567,GSM4034568,GSM4034569,GSM4034570,GSM4034571,GSM4034572,GSM4034573,GSM4034574,GSM4034575,GSM4034576,GSM4034577,GSM4034578,GSM4034579,GSM4034580,GSM4034581,GSM4034582,GSM4034583,GSM4034584,GSM4034585,GSM4034586,GSM4034587,GSM4034588,GSM4034589,GSM4034590,GSM4034591,GSM4034592,GSM4034593,GSM4034594,GSM4034595,GSM4034596,GSM4034597,GSM4034598,GSM4034599,GSM4034600,GSM4034601,GSM4034602,GSM4034603,GSM4034604,GSM4034605,GSM4034606,GSM4034607,GSM4034608,GSM4034609,GSM4034610,GSM4034611,GSM4034612,GSM4034613,GSM4034614,GSM4034615,GSM4034616,GSM4034617,GSM4034618,GSM4034619,GSM4034620,GSM4034621,GSM4034622,GSM4034623,GSM4034624,GSM4034625,GSM4034626,GSM4034627,GSM4034628,GSM4034629,GSM4034630,GSM4034631,GSM4034632,GSM4034633,GSM4034634,GSM4034635,GSM4034636,GSM4034637,GSM4034638,GSM4034639,GSM4034640,GSM4034641,GSM4034642,GSM4034643,GSM4034644,GSM4034645,GSM4034646,GSM4034647,GSM4034648,GSM4034649,GSM4034650,GSM4034651,GSM4034652,GSM4034653,GSM4034654,GSM4034655,GSM4034656,GSM4034657,GSM4034658,GSM4034659,GSM4034660,GSM4034661,GSM4034662,GSM4034663,GSM4034664,GSM4034665,GSM4034666,GSM4034667,GSM4034668,GSM4034669,GSM4034670,GSM4034671,GSM4034672,GSM4034673,GSM4034674,GSM4034675,GSM4034676,GSM4034677,GSM4034678,GSM4034679,GSM4034680,GSM4034681,GSM4034682,GSM4034683,GSM4034684,GSM4034685,GSM4034686,GSM4034687,GSM4034688,GSM4034689,GSM4034690,GSM4034691,GSM4034692,GSM4034693,GSM4034694,GSM4034695,GSM4034696,GSM4034697,GSM4034698,GSM4034699,GSM4034700,GSM4034701,GSM4034702,GSM4034703,GSM4034704,GSM4034705,GSM4034706,GSM4034707,GSM4034708,GSM4034709,GSM4034710,GSM4034711,GSM4034712,GSM4034713,GSM4034714,GSM4034715,GSM4034716,GSM4034717,GSM4034718,GSM4034719,GSM4034720,GSM4034721,GSM4034722,GSM4034723,GSM4034724,GSM4034725,GSM4034726,GSM4034727,GSM4034728,GSM4034729,GSM4034730,GSM4034731,GSM4034732,GSM4034733,GSM4034734,GSM4034735,GSM4034736,GSM4034737,GSM4034738,GSM4034739,GSM4034740,GSM4034741,GSM4034742,GSM4034743,GSM4034744
2
+ Ovarian_Cancer,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
3
+ Age,56.0,58.0,43.0,61.0,75.0,60.0,49.0,56.0,75.0,64.0,58.0,64.0,58.0,50.0,45.0,57.0,59.0,60.0,68.0,66.0,52.0,60.0,49.0,53.0,79.0,45.0,51.0,66.0,58.0,51.0,63.0,60.0,56.0,55.0,45.0,65.0,62.0,60.0,79.0,57.0,51.0,61.0,61.0,66.0,61.0,59.0,75.0,58.0,51.0,41.0,50.0,53.0,44.0,72.0,52.0,59.0,68.0,69.0,50.0,69.0,48.0,72.0,48.0,62.0,58.0,73.0,60.0,66.0,74.0,59.0,70.0,64.0,63.0,37.0,56.0,60.0,63.0,70.0,55.0,60.0,33.0,67.0,59.0,45.0,63.0,71.0,66.0,73.0,65.0,46.0,71.0,79.0,62.0,74.0,62.0,74.0,56.0,58.0,72.0,70.0,52.0,54.0,52.0,63.0,71.0,64.0,64.0,65.0,42.0,49.0,61.0,57.0,46.0,62.0,48.0,61.0,53.0,64.0,68.0,44.0,56.0,54.0,75.0,54.0,63.0,56.0,51.0,68.0,58.0,60.0,61.0,64.0,57.0,57.0,67.0,52.0,48.0,60.0,66.0,73.0,68.0,55.0,76.0,58.0,68.0,66.0,57.0,46.0,76.0,63.0,78.0,50.0,51.0,51.0,45.0,75.0,68.0,51.0,70.0,66.0,66.0,73.0,55.0,52.0,37.0,76.0,64.0,60.0,73.0,68.0,45.0,67.0,64.0,53.0,68.0,68.0,74.0,61.0,54.0,54.0,57.0,64.0,52.0,62.0,52.0,44.0,78.0,45.0,73.0,52.0,59.0,54.0,53.0,74.0,57.0,65.0,66.0,60.0,60.0,78.0,76.0,46.0,57.0,57.0,76.0,60.0,67.0,62.0,76.0,64.0,65.0,63.0,64.0,59.0,40.0,43.0,61.0,53.0,65.0,69.0,57.0,57.0,58.0,41.0,60.0,66.0,77.0,67.0,60.0,44.0,67.0,73.0,56.0,59.0,59.0,55.0,49.0,52.0,53.0,67.0,69.0,57.0,49.0,52.0,44.0,55.0,59.0,65.0,40.0,69.0,67.0,64.0,49.0,66.0,70.0,59.0,58.0,30.0,54.0,67.0,77.0,75.0,78.0,44.0,71.0,67.0,53.0,79.0,58.0,46.0,41.0,55.0,61.0,51.0,58.0,58.0,64.0,70.0,68.0,47.0,63.0,58.0,41.0,53.0,55.0,73.0,65.0,48.0,63.0,67.0,62.0,55.0,58.0,66.0,50.0,50.0,43.0,46.0,44.0,59.0,62.0,48.0,57.0,54.0,63.0,72.0,59.0,53.0,63.0,61.0,58.0,59.0,55.0,69.0,56.0,60.0,61.0,54.0,78.0,69.0,54.0,51.0,62.0,76.0,65.0,67.0,57.0,62.0,57.0,76.0,50.0,61.0,76.0,70.0,62.0,39.0,51.0,63.0,76.0,64.0,48.0,77.0,69.0,54.0,61.0,62.0,53.0,65.0,63.0,63.0,69.0,47.0,60.0,50.0,66.0,72.0,52.0,56.0,40.0,58.0,62.0,46.0,57.0,37.0,47.0,52.0,69.0,67.0,63.0,76.0,62.0,72.0,75.0,60.0,77.0,72.0,44.0,59.0,71.0,52.0,68.0,77.0,49.0,61.0,68.0,58.0,47.0,72.0,63.0,58.0,74.0,60.0,58.0,72.0,53.0,74.0,59.0,58.0,65.0,59.0,64.0,74.0,59.0,56.0,52.0,65.0,71.0,72.0,56.0,58.0,57.0,65.0,75.0,48.0,75.0,58.0,48.0,64.0,74.0,63.0,59.0,42.0,53.0,53.0,58.0,65.0,50.0,48.0,71.0,58.0,64.0,56.0,45.0,76.0,55.0,67.0,73.0,54.0,70.0,61.0,74.0,52.0,57.0,74.0,67.0,62.0,77.0,57.0,70.0,77.0,73.0,66.0,43.0,68.0,60.0,76.0,62.0,56.0,76.0,56.0,59.0,43.0,65.0,77.0,40.0,68.0,70.0,58.0,76.0,43.0,51.0,66.0,45.0,73.0,68.0,57.0,47.0,69.0,56.0,64.0,65.0,69.0,55.0,60.0,63.0,69.0,52.0,68.0,51.0,59.0,51.0,53.0,55.0,73.0,44.0,58.0,77.0,63.0,59.0,60.0,63.0,60.0,75.0,60.0,64.0,63.0,79.0,77.0,62.0,73.0,71.0,46.0,48.0,44.0,64.0,57.0,55.0,54.0,40.0,52.0,56.0,70.0,59.0,46.0,68.0,76.0,72.0,65.0,62.0,39.0,55.0,51.0,65.0,60.0,74.0,54.0,89.0,63.0,70.0,49.0,76.0,68.0,55.0,79.0,47.0,60.0,65.0,56.0,65.0,54.0,67.0,78.0,46.0,52.0,63.0,61.0,59.0,49.0,76.0,72.0,,64.0,,58.0,91.0,52.0,61.0,78.0,68.0,38.0,73.0,63.0,67.0,50.0,55.0,60.0,64.0,66.0,58.0,65.0,53.0,79.0,71.0,51.0,70.0,55.0,56.0,73.0,62.0,50.0,59.0,48.0,69.0,49.0,46.0,52.0,79.0,64.0,59.0,58.0,53.0,58.0,62.0,55.0,43.0,61.0,92.0,70.0,69.0,55.0,49.0,62.0,79.0,60.0,59.0,70.0,70.0,80.0,65.0,62.0,62.0,85.0,54.0,64.0,76.0,75.0,65.0,66.0,66.0,48.0,64.0,78.0,68.0,39.0,54.0,75.0,69.0,68.0,86.0,67.0,64.0,77.0,71.0,68.0,49.0,80.0,82.0,52.0,82.0,78.0,50.0,53.0,49.0,48.0,43.0,54.0,51.0,64.0,54.0,54.0,36.0,60.0,45.0,55.0,49.0,55.0,46.0,64.0,43.0,39.0,45.0,50.0,72.0,59.0,55.0,51.0,48.0,46.0,59.0,53.0,49.0,73.0,72.0,50.0,64.0,72.0,70.0,49.0,44.0,55.0,47.0,69.0,78.0,52.0,65.0,92.0,71.0,43.0,69.0,56.0,42.0,79.0,46.0,52.0,43.0,75.0,36.0,66.0,49.0,52.0,56.0,70.0,68.0,68.0,43.0,51.0,67.0,70.0,50.0,60.0,52.0,48.0,62.0,51.0,72.0,51.0,51.0,55.0,73.0,67.0,65.0,48.0,71.0,45.0,66.0,70.0,48.0,65.0,48.0,72.0,47.0,68.0,59.0,55.0,68.0,43.0,45.0,58.0,63.0,73.0,63.0,66.0,64.0,51.0,59.0,55.0,63.0,68.0,69.0,74.0,38.0,49.0,73.0,59.0,52.0,73.0,49.0,70.0,73.0,61.0,68.0,58.0,68.0,61.0,62.0,51.0,46.0,45.0,73.0,48.0,58.0,53.0,71.0,55.0,61.0,52.0,56.0,42.0,59.0,52.0,41.0,70.0,51.0,42.0,68.0,40.0,48.0,65.0,63.0,62.0,68.0,72.0,48.0,59.0,49.0,61.0,51.0,48.0,63.0,63.0,47.0,48.0,55.0,57.0,71.0,47.0,43.0,60.0,57.0,53.0,46.0,71.0,67.0,68.0,67.0,50.0,51.0,42.0,63.0,72.0,40.0,57.0,43.0,55.0,60.0,63.0,72.0,43.0,71.0,54.0,59.0,56.0,74.0,63.0,57.0,54.0,58.0,74.0,53.0,64.0,68.0,44.0,44.0,71.0,63.0,72.0,71.0,39.0,48.0,49.0,58.0,48.0,60.0,65.0,70.0,70.0,62.0,51.0,59.0,58.0,67.0,44.0,47.0,68.0,60.0,68.0,55.0,66.0,74.0,52.0,60.0,72.0,64.0,71.0,51.0,62.0,69.0,68.0,69.0,62.0,56.0,59.0,58.0,74.0,54.0,54.0,51.0,50.0,50.0,46.0,58.0,58.0,63.0,60.0,67.0,70.0,49.0,61.0,72.0,38.0,57.0,57.0,64.0,70.0,67.0,57.0,55.0,61.0,59.0,42.0,69.0,51.0,62.0,61.0,63.0,60.0,60.0,53.0,53.0,48.0,48.0,69.0,50.0,62.0,59.0,50.0,72.0,51.0,61.0,59.0,57.0,56.0,50.0,67.0,66.0,65.0,47.0,67.0,45.0,64.0,60.0,57.0,71.0,61.0,50.0,71.0,53.0,61.0,49.0,74.0,57.0,54.0,64.0,61.0,49.0,55.0,67.0,48.0,63.0,54.0,61.0,64.0,61.0,67.0,55.0,60.0,54.0,63.0,53.0,44.0,50.0,47.0,60.0,60.0,45.0,53.0,56.0,62.0,52.0,63.0,54.0,60.0,60.0,71.0,50.0,68.0,40.0,42.0,39.0,56.0,59.0,52.0,44.0,56.0,48.0,65.0,56.0,66.0,53.0,52.0,61.0,64.0,68.0,50.0,63.0,50.0,65.0,53.0,63.0,59.0,47.0,55.0,52.0,49.0,48.0,53.0,64.0,58.0,54.0,63.0,57.0,69.0,54.0,58.0,68.0,60.0,55.0,63.0,66.0,58.0,59.0,67.0,54.0,55.0,60.0,55.0,67.0,59.0,49.0,41.0,65.0,68.0,48.0,62.0,46.0,54.0,62.0,50.0,69.0,69.0,40.0,63.0,48.0,53.0,54.0,53.0,56.0,65.0,50.0,61.0,53.0,62.0,63.0,40.0,38.0,62.0,61.0,57.0,60.0,69.0,63.0,56.0,61.0,56.0,58.0,60.0,55.0,40.0,60.0,66.0,64.0,36.0,52.0,56.0,69.0,62.0,65.0,55.0,61.0,56.0,52.0,47.0,61.0,54.0,67.0,62.0,67.0,62.0,59.0,50.0,58.0,65.0,58.0,66.0,51.0,62.0,64.0,59.0,66.0,55.0,48.0,65.0,66.0,52.0,66.0,50.0,63.0,61.0,59.0,54.0,69.0,53.0,64.0,53.0,58.0,64.0,64.0,46.0,50.0,48.0,59.0,66.0,68.0,66.0,56.0,66.0,53.0,59.0,52.0,63.0,48.0,58.0,60.0,65.0,55.0,59.0,69.0,57.0,64.0,60.0,61.0,52.0,50.0,62.0,62.0,61.0,54.0,61.0,51.0,54.0,68.0,62.0,68.0,55.0,49.0,60.0,63.0,54.0,64.0,66.0,68.0,64.0,53.0,50.0,57.0,49.0,48.0,65.0,68.0,41.0,57.0,47.0,55.0,61.0,56.0,43.0,60.0,58.0,56.0,57.0,67.0,56.0,54.0,59.0,40.0,64.0,47.0,62.0,59.0,63.0,45.0,64.0,66.0,58.0,47.0,66.0,48.0,55.0,61.0,47.0,40.0,59.0,66.0,47.0,55.0,65.0,62.0,39.0,61.0,58.0,64.0,48.0,64.0,61.0,59.0,57.0,56.0,43.0,63.0,56.0,61.0,59.0,41.0,65.0,49.0,48.0,59.0,51.0,63.0,41.0,63.0,53.0,52.0,54.0,49.0,58.0,61.0,61.0,48.0,45.0,63.0,56.0,65.0,48.0,55.0,63.0,54.0,61.0,66.0,58.0,65.0,61.0,53.0,58.0,57.0,73.0,64.0,72.0,62.0,66.0,52.0,74.0,47.0,72.0,37.0,70.0,60.0,43.0,52.0,53.0,74.0,69.0,71.0,57.0,48.0,71.0,61.0,63.0,63.0,72.0,69.0,62.0,74.0,54.0,70.0,64.0,74.0,63.0,69.0,71.0,57.0,53.0,69.0,52.0,72.0,58.0,66.0,44.0,58.0,55.0,53.0,63.0,66.0,73.0,71.0,73.0,58.0,61.0,59.0,59.0,64.0,53.0,67.0,68.0,60.0,58.0,71.0,55.0,61.0,56.0,71.0,64.0,55.0,58.0,68.0,57.0,57.0,57.0,69.0,67.0,61.0,50.0,57.0,59.0,62.0,52.0,52.0,48.0,49.0,53.0,52.0,58.0,67.0,64.0,51.0,54.0,52.0,69.0,65.0,64.0,63.0,64.0,51.0,61.0,50.0,67.0,55.0,56.0,58.0,63.0,66.0,56.0,49.0,54.0,68.0,49.0,59.0,55.0,58.0,60.0,45.0,67.0,40.0,47.0,66.0,60.0,61.0,68.0,46.0,71.0,62.0,74.0,58.0,45.0,45.0,63.0,52.0,44.0,39.0,60.0,50.0,49.0,45.0,52.0,55.0,62.0,39.0,64.0,54.0,64.0,48.0,61.0,43.0,64.0,63.0,62.0,67.0,74.0,67.0,72.0,57.0,63.0,63.0,69.0,74.0,55.0,81.0,61.0,52.0,73.0,72.0,57.0,50.0,61.0,52.0,54.0,56.0,58.0,70.0,56.0,37.0,54.0,52.0,49.0,76.0,46.0,71.0,44.0,60.0,53.0,63.0,69.0,50.0,74.0,72.0,40.0,62.0,57.0,49.0,63.0,65.0,61.0,61.0,71.0,49.0,56.0,50.0,68.0,48.0,66.0,48.0,54.0,61.0,55.0,45.0,78.0,59.0,76.0,82.0,59.0,65.0,80.0,55.0,43.0,62.0,71.0,51.0,51.0,70.0,73.0,60.0,62.0,57.0,61.0,58.0,67.0,78.0,63.0,79.0,32.0,61.0,68.0,64.0,60.0,51.0,65.0,54.0,60.0,54.0,70.0,69.0,75.0,30.0,43.0,50.0,50.0,78.0,44.0,67.0,54.0,50.0,74.0,60.0,53.0,78.0,74.0,66.0,65.0,53.0,60.0,39.0,42.0,65.0,82.0,42.0,57.0,71.0,82.0,59.0,51.0,64.0,75.0,66.0,54.0,87.0,72.0,69.0,70.0,42.0,50.0,39.0,66.0,60.0,52.0,62.0,57.0,74.0,44.0,84.0,53.0,51.0,85.0,62.0,46.0,27.0,62.0,46.0,39.0,64.0,38.0,59.0,79.0,60.0,45.0,74.0,62.0,65.0,71.0,74.0,33.0,49.0,54.0,50.0,55.0,44.0,56.0,67.0,61.0,88.0,66.0,44.0,65.0,70.0,70.0,82.0,59.0,66.0,70.0,71.0,66.0,58.0,92.0,73.0,51.0,84.0,58.0,72.0,73.0,52.0,61.0,81.0,47.0,72.0,78.0,63.0,63.0,76.0,82.0,69.0,61.0,72.0,76.0,60.0,65.0,53.0,48.0,46.0,59.0,69.0,56.0,59.0,51.0,68.0,71.0,41.0,50.0,44.0,61.0,68.0,69.0,70.0,53.0,68.0,49.0,62.0,70.0,51.0,61.0,32.0,44.0,58.0,53.0,53.0,64.0,50.0,44.0,50.0,59.0,51.0,65.0,57.0,60.0,49.0,53.0,48.0,57.0,71.0,74.0,58.0,48.0,48.0,50.0,70.0,57.0,64.0,64.0,55.0,54.0,66.0,45.0,46.0,35.0,52.0,61.0,57.0,60.0,53.0,50.0,59.0,55.0,70.0,67.0,47.0,60.0,66.0,55.0,45.0,61.0,55.0,58.0,53.0,48.0,60.0,67.0,48.0,65.0,50.0,51.0,53.0,50.0,56.0,59.0,53.0,65.0,50.0,57.0,67.0,31.0,51.0,47.0,50.0,51.0,58.0,59.0,57.0,36.0,52.0,53.0,65.0,68.0,67.0,62.0,65.0,60.0,43.0,59.0,61.0,48.0,60.0,65.0,63.0,57.0,57.0,63.0,56.0,51.0,67.0,56.0,66.0,58.0,47.0,67.0,63.0,68.0,38.0,65.0,43.0,65.0,63.0,47.0,57.0,49.0,54.0,56.0,61.0,64.0,66.0,68.0,61.0,60.0,56.0,66.0,58.0,55.0,47.0,65.0,54.0,67.0,64.0,55.0,54.0,68.0,44.0,43.0,39.0,58.0,59.0,65.0,63.0,53.0,61.0,67.0,42.0,66.0,62.0,59.0,54.0,66.0,64.0,42.0,61.0,49.0,59.0,62.0,54.0,58.0,50.0,69.0,64.0,64.0,63.0,67.0,61.0,46.0,46.0,49.0,52.0,53.0,54.0,51.0,64.0,44.0,58.0,67.0,57.0,69.0,63.0,49.0,60.0,68.0,53.0,54.0,46.0,53.0,67.0,57.0,63.0,60.0,69.0,66.0,69.0,56.0,41.0,47.0,56.0,69.0,60.0,63.0,51.0,61.0,58.0,66.0,49.0,61.0,62.0,48.0,37.0,60.0,46.0,62.0,61.0,48.0,63.0,69.0,68.0,71.0,74.0,49.0,64.0,71.0,57.0,68.0,58.0,55.0,69.0,64.0,69.0,47.0,61.0,73.0,53.0,66.0,60.0,61.0,41.0,63.0,59.0,57.0,68.0,76.0,61.0,82.0,59.0,71.0,57.0,56.0,73.0,73.0,51.0,73.0,79.0,59.0,74.0,48.0,65.0,59.0,70.0,55.0,79.0,49.0,55.0,58.0,47.0,54.0,48.0,56.0,50.0,50.0,58.0,78.0,69.0,44.0,45.0,76.0,68.0,66.0,77.0,61.0,67.0,72.0,61.0,59.0,76.0,68.0,59.0,66.0,60.0,57.0,64.0,48.0,62.0,56.0,48.0,65.0,65.0,82.0,47.0,56.0,78.0,82.0,75.0,60.0,65.0,78.0,66.0,67.0,69.0,44.0,73.0,56.0,61.0,90.0,55.0,62.0,51.0,51.0,57.0,44.0,48.0,67.0,74.0,59.0,61.0,52.0,61.0,65.0,58.0,86.0,66.0,54.0,61.0,,68.0,61.0,60.0,61.0,55.0,55.0,45.0,53.0,67.0,56.0,78.0,75.0,77.0,76.0,65.0,67.0,66.0,64.0,63.0,48.0,52.0,41.0,52.0,61.0,71.0,56.0,76.0,72.0,48.0,61.0,60.0,62.0,48.0,69.0,44.0,49.0,38.0,53.0,75.0,71.0,59.0,68.0,55.0,67.0,81.0,63.0,62.0,50.0,83.0,61.0,55.0,39.0,55.0,69.0,81.0,65.0,61.0,46.0,44.0,45.0,52.0,77.0,65.0,38.0,35.0,45.0,54.0,53.0,63.0,57.0,53.0,72.0,75.0,53.0,71.0,67.0,54.0,47.0,45.0,43.0,59.0,54.0,48.0,66.0,34.0,57.0,84.0,73.0,53.0,55.0,50.0,52.0,79.0,76.0,71.0,54.0,66.0,59.0,58.0,58.0,72.0,66.0,44.0,52.0,75.0,83.0,47.0,69.0,81.0,,55.0,76.0,57.0,68.0,45.0,74.0,64.0,55.0,46.0,63.0,52.0,63.0,75.0,65.0,51.0,61.0,53.0,47.0,72.0,74.0,75.0,42.0,68.0,42.0,55.0,60.0,68.0,76.0,76.0,76.0,64.0,74.0,90.0,53.0,76.0,43.0,47.0,63.0,53.0,72.0,49.0,66.0,63.0,67.0,44.0,56.0,60.0,66.0,59.0,44.0,83.0,37.0,70.0,51.0,62.0,49.0,60.0,41.0,54.0,74.0,65.0,56.0,65.0,74.0,54.0,41.0,48.0,82.0,54.0,56.0,69.0,72.0,48.0,54.0,83.0,70.0,63.0,68.0,76.0,55.0,74.0,81.0,76.0,84.0,70.0,52.0,56.0,67.0,66.0,48.0,52.0,53.0,46.0,63.0,43.0,49.0,52.0,60.0,49.0,82.0,52.0,,63.0,71.0,71.0,59.0,65.0,61.0,38.0,75.0,77.0,67.0,64.0,61.0,82.0,58.0,52.0,55.0,67.0,72.0,54.0,54.0,40.0,51.0,62.0,71.0,60.0,58.0,61.0,42.0,75.0,74.0,65.0,48.0,63.0,64.0,73.0,81.0,69.0,47.0,58.0,59.0,71.0,79.0,61.0,45.0,50.0,64.0,58.0,,51.0,60.0,62.0,78.0,59.0,57.0,64.0,,64.0,62.0,40.0,74.0,56.0,60.0,61.0,54.0,55.0,53.0,60.0,47.0,60.0,70.0,55.0,50.0,53.0,64.0,68.0,,73.0,72.0,59.0,54.0,62.0,63.0,50.0,,44.0,58.0,57.0,79.0,72.0,,66.0,58.0,74.0,75.0,79.0,56.0,65.0,73.0,82.0,64.0,66.0,50.0,61.0,67.0,65.0,41.0,64.0,63.0,77.0,59.0,73.0,,58.0,69.0,58.0,68.0,52.0,62.0,78.0,57.0,72.0,74.0,71.0,75.0,40.0,45.0,61.0,67.0,66.0,51.0,52.0,66.0,67.0,58.0,61.0,,,58.0,57.0,70.0,49.0,45.0,65.0,70.0,47.0,52.0,58.0,70.0,58.0,,47.0,46.0,72.0,,,58.0,59.0,49.0,66.0,66.0,78.0,60.0,59.0,87.0,38.0,59.0,59.0,67.0,67.0,78.0,63.0,61.0,49.0,51.0,55.0,,45.0,81.0,75.0,74.0,62.0,82.0,52.0,58.0,64.0,53.0,43.0,62.0,56.0,68.0,45.0,74.0,55.0,59.0,69.0,56.0,72.0,58.0,80.0,65.0,70.0,60.0,55.0,57.0,43.0,67.0,73.0,66.0,76.0,70.0,82.0,81.0,58.0,73.0,66.0,68.0,64.0,66.0,54.0,61.0,52.0,89.0,70.0,64.0,57.0,73.0,66.0,78.0,70.0,77.0,66.0,54.0,58.0,54.0,44.0,52.0,61.0,50.0,73.0,62.0,,,,,,,,,,45.0,67.0,50.0,62.0,64.0,78.0,57.0,70.0,80.0,67.0,83.0,68.0,70.0,67.0,55.0,64.0,76.0,52.0,59.0,54.0,48.0,68.0,45.0,58.0,62.0,46.0,66.0,66.0,66.0,72.0,41.0,66.0,66.0,54.0,46.0,59.0,66.0,47.0,64.0,66.0,56.0,56.0,72.0,51.0,55.0,70.0,51.0,52.0,76.0,68.0,65.0,39.0,51.0,66.0,73.0,43.0,78.0,63.0,66.0,68.0,72.0,49.0,66.0,55.0,68.0,61.0,48.0,58.0,84.0,57.0,55.0,45.0,64.0,79.0,51.0,29.0,64.0,70.0,61.0,56.0,60.0,47.0,51.0,75.0,63.0,86.0,80.0,57.0,71.0,60.0,65.0,57.0,64.0,58.0,62.0,84.0,54.0,64.0,62.0,53.0,75.0,57.0,69.0,43.0,66.0,64.0,57.0,74.0,64.0,64.0,63.0,65.0,46.0,63.0,64.0,91.0,74.0,70.0,73.0,52.0,62.0,72.0,54.0,70.0,66.0,67.0,62.0,44.0,64.0,76.0,49.0,39.0,66.0,72.0,46.0,58.0,41.0,65.0,66.0,48.0,79.0,69.0,68.0,61.0,71.0,54.0,65.0,75.0,47.0,68.0,42.0,47.0,69.0,46.0,56.0,67.0,62.0,39.0,60.0,52.0,53.0,68.0,72.0,76.0,68.0,64.0,76.0,75.0,70.0,61.0,54.0,59.0,82.0,72.0,80.0,69.0,74.0,56.0,42.0,72.0,70.0,63.0,48.0,56.0,73.0,61.0,72.0,61.0,63.0,54.0,48.0,46.0,58.0,54.0,58.0,62.0,61.0,65.0,75.0,63.0,65.0,78.0,62.0,78.0,64.0,58.0,78.0,58.0,71.0,82.0,73.0,55.0,55.0,50.0,74.0,52.0,72.0,57.0,48.0,60.0,47.0,86.0,61.0,54.0,66.0,63.0,82.0,83.0,73.0,47.0,46.0,61.0,55.0,50.0,65.0,44.0,75.0,59.0,62.0,53.0,60.0,55.0,60.0,80.0,44.0,45.0,50.0,65.0,65.0,60.0,71.0,50.0,62.0,82.0,60.0,61.0,77.0,74.0,78.0,34.0,51.0,66.0,66.0,55.0,73.0,87.0,72.0,46.0,72.0,79.0,64.0,79.0,59.0,64.0,81.0,63.0,74.0,68.0,86.0,72.0,67.0,71.0,60.0,69.0,56.0,53.0,50.0,55.0,70.0,62.0,76.0,86.0,83.0,68.0,80.0,52.0,73.0,61.0,61.0,48.0,49.0,52.0,75.0,63.0,77.0,52.0,70.0,62.0,66.0,58.0,67.0,66.0,75.0,81.0,78.0,81.0,57.0,62.0,71.0,21.0,49.0,66.0,65.0,60.0,68.0,68.0,66.0,72.0,63.0,78.0,70.0,44.0,47.0,69.0,63.0,68.0,54.0,57.0,48.0,73.0,52.0,69.0,73.0,43.0,61.0,46.0,78.0,81.0,68.0,60.0,65.0,52.0,77.0,81.0,71.0,49.0,80.0,63.0,52.0,59.0,57.0,30.0,71.0,71.0,77.0,76.0,62.0,78.0,76.0,63.0,70.0,43.0,66.0,61.0,41.0,64.0,51.0,78.0,67.0,75.0,50.0,58.0,76.0,78.0,68.0,60.0,65.0,45.0,77.0,68.0,50.0,70.0,74.0,66.0,75.0,69.0,65.0,62.0,67.0,71.0,73.0,68.0,61.0,51.0,58.0,64.0,64.0,81.0,61.0,64.0,65.0,53.0,71.0,64.0,72.0,74.0,56.0,77.0,61.0,62.0,47.0,60.0,82.0,71.0,58.0,58.0,76.0,91.0,69.0,81.0,79.0,72.0,86.0,60.0,58.0,78.0,66.0,66.0,80.0,91.0,74.0,65.0,73.0,55.0,59.0,68.0,53.0,64.0,54.0,48.0,69.0,78.0,65.0,78.0,55.0,56.0,75.0,68.0,77.0,76.0,70.0,75.0,74.0,75.0,64.0,70.0,67.0,43.0,62.0,74.0,79.0,60.0,55.0,56.0,40.0,57.0,82.0,57.0,59.0,50.0,29.0,66.0,59.0,64.0,53.0,75.0,57.0,63.0,78.0,79.0,51.0,69.0,40.0,56.0,67.0,46.0,64.0,56.0,76.0,60.0,71.0,65.0,64.0,57.0,71.0,70.0,70.0,69.0,77.0,60.0,82.0,81.0,48.0,73.0,73.0,72.0,50.0,69.0,52.0,62.0,57.0,93.0,87.0,64.0,66.0,80.0,84.0,65.0,71.0,54.0,66.0,64.0,56.0,68.0,54.0,79.0,53.0,68.0,59.0,77.0,79.0,49.0,58.0,59.0,47.0,46.0,69.0,76.0,46.0,76.0,74.0,58.0,58.0,58.0,57.0,59.0,83.0,60.0,63.0,54.0,60.0,59.0,73.0,50.0,67.0,48.0,52.0,50.0,47.0,51.0,52.0,39.0,42.0,63.0,65.0,50.0,64.0,63.0,40.0,55.0,57.0,71.0,63.0,71.0,69.0,54.0,68.0,74.0,50.0,58.0,67.0,47.0,60.0,53.0,53.0,70.0,66.0,50.0,70.0,54.0,72.0,57.0,46.0,57.0,55.0,62.0,48.0,46.0,47.0,62.0,71.0,64.0,50.0,52.0,72.0,60.0,55.0,65.0,59.0,45.0,34.0,64.0,70.0,50.0,49.0,51.0,62.0,44.0,56.0,48.0,67.0,55.0,44.0,60.0,55.0,56.0,73.0,53.0,58.0,74.0,65.0,38.0,65.0,56.0,73.0,56.0,55.0,72.0,53.0,47.0,71.0,66.0,52.0,72.0,70.0,36.0,62.0,56.0,72.0,64.0,63.0,39.0,70.0,42.0,48.0,53.0,60.0,66.0,57.0,40.0,58.0,54.0,44.0,51.0,70.0,63.0,71.0,56.0,62.0,36.0,58.0,62.0,57.0,62.0,68.0,51.0,72.0,74.0,67.0,50.0,73.0,71.0,52.0,74.0,72.0,52.0,51.0,39.0,58.0,45.0,58.0,59.0,53.0,49.0,62.0,53.0,52.0,64.0,64.0,59.0,57.0,70.0,57.0,59.0,47.0,45.0,63.0,48.0,72.0,71.0,64.0,70.0,60.0,40.0,63.0,63.0,48.0,72.0,64.0,67.0,73.0,74.0,70.0,53.0,72.0,60.0,67.0,50.0,74.0,53.0,59.0,46.0,64.0,66.0,55.0,66.0,62.0,64.0,53.0,64.0,69.0,50.0,74.0,49.0,57.0,52.0,44.0,60.0,61.0,46.0,53.0,71.0,65.0,61.0,73.0,57.0,67.0,63.0,69.0,67.0,60.0,56.0,65.0,55.0,70.0,59.0,63.0,67.0,49.0,50.0,43.0,57.0,50.0,56.0,64.0,63.0,49.0,43.0,71.0,67.0,70.0,58.0,46.0,62.0,54.0,42.0,49.0,63.0,52.0,67.0,62.0,68.0,64.0,65.0,69.0,54.0,58.0,56.0,61.0,58.0,35.0,63.0,55.0,66.0,56.0,57.0,49.0,52.0,57.0,57.0,55.0,47.0,49.0,39.0,63.0,74.0,51.0,58.0,53.0,69.0,47.0,64.0,52.0,52.0,59.0,57.0,60.0,41.0,58.0,67.0,65.0,47.0,60.0,71.0,71.0,65.0,57.0,70.0,50.0,71.0,69.0,66.0,64.0,73.0,31.0,71.0,67.0,61.0,44.0,56.0,57.0,65.0,56.0,57.0,63.0,56.0,59.0,74.0,64.0,53.0,66.0,56.0,63.0,57.0,73.0,68.0,68.0,47.0,61.0,60.0,68.0,73.0,71.0,35.0,59.0,46.0,70.0,48.0,63.0,60.0,60.0,73.0,47.0,46.0,61.0,61.0,61.0,51.0,60.0,70.0,68.0,45.0,61.0,62.0,47.0,37.0,45.0,43.0,52.0,68.0,64.0,61.0,63.0,72.0,52.0,55.0,44.0,60.0,66.0,68.0,51.0,43.0,59.0,45.0,63.0,44.0,62.0,74.0,55.0,44.0,53.0,51.0,45.0,54.0,45.0,63.0,59.0,69.0,64.0,66.0,71.0,69.0,71.0,51.0,55.0,54.0,64.0,62.0,47.0,49.0,72.0,58.0,59.0,44.0,64.0,64.0,39.0,60.0,70.0,56.0,62.0,70.0,63.0,62.0,69.0,71.0,46.0,65.0,63.0,58.0,68.0,65.0,45.0,40.0,62.0,73.0,62.0,57.0,58.0,69.0,32.0,48.0,49.0,66.0,70.0,55.0,56.0,56.0,61.0,64.0,61.0,60.0,40.0,43.0,56.0,57.0,67.0,72.0,70.0,66.0,55.0,74.0,59.0,47.0,60.0,38.0,41.0,73.0,56.0,48.0,72.0,73.0,49.0,58.0,47.0,45.0,46.0,64.0,55.0,71.0,55.0,49.0,51.0,78.0,57.0,57.0,74.0,58.0,70.0,63.0,77.0,63.0,64.0,79.0,68.0,70.0,63.0,78.0,77.0,67.0,76.0,62.0,62.0,59.0,51.0,70.0,56.0,73.0,79.0,83.0,83.0,70.0,60.0,69.0,45.0,72.0,69.0,66.0,63.0,77.0,70.0,84.0,63.0,57.0,60.0,71.0,72.0,70.0,74.0,72.0,72.0,71.0,74.0,72.0,82.0,81.0,61.0,83.0,70.0,76.0,73.0,63.0,53.0,70.0,62.0,55.0,55.0,78.0,71.0,86.0,74.0,75.0,55.0,54.0,55.0,79.0,60.0,56.0,78.0,62.0,39.0,54.0,63.0,54.0,78.0,58.0,71.0,60.0,67.0,67.0,63.0,64.0,59.0,69.0,79.0,59.0,50.0,78.0,64.0,57.0,77.0,60.0,69.0,74.0,87.0,68.0,76.0,76.0,77.0,67.0,62.0,72.0,50.0,53.0,45.0,74.0,62.0,60.0,79.0,63.0,64.0,86.0,59.0,61.0,63.0,80.0,38.0,86.0,49.0,67.0,85.0,58.0,55.0,70.0,57.0,77.0,55.0,76.0,78.0,73.0,66.0,58.0,48.0,67.0,55.0,55.0,75.0,65.0,39.0,44.0,37.0,58.0,70.0,43.0,45.0,59.0,65.0,64.0,52.0,54.0,69.0,56.0,51.0,38.0,62.0,72.0,64.0,70.0,56.0,68.0,72.0,54.0,52.0,73.0,47.0,71.0,47.0,60.0,40.0,46.0,46.0,65.0,71.0,74.0,45.0,68.0,64.0,47.0,72.0,66.0,70.0,63.0,72.0,36.0,60.0,51.0,63.0,61.0,63.0,47.0,65.0,65.0,72.0,47.0,50.0,63.0,59.0,72.0,61.0,69.0,45.0,55.0,70.0,42.0,68.0,51.0,70.0,55.0,53.0,58.0,54.0,45.0,69.0,62.0,67.0,59.0,77.0,59.0,74.0,55.0,47.0,53.0,61.0,59.0,74.0,27.0,41.0,43.0,55.0,62.0,43.0,49.0,50.0,49.0,69.0,70.0,54.0,40.0,50.0,76.0,58.0,53.0,60.0,68.0,58.0,58.0,72.0,64.0,40.0,66.0,76.0,46.0,35.0,71.0,73.0,58.0,40.0,52.0,71.0,46.0,39.0,69.0,50.0,63.0,37.0,45.0,74.0,64.0,69.0,61.0,57.0,38.0,74.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,55.0,50.0,56.0,50.0,58.0,58.0,58.0,52.0,53.0,57.0,55.0,74.0,66.0,51.0,68.0,70.0,52.0,41.0,77.0,58.0,63.0,58.0,54.0,69.0,50.0,77.0,57.0,73.0,50.0,50.0,62.0,,,64.0,47.0,46.0,55.0,54.0,86.0,62.0,47.0,75.0,60.0,46.0,70.0,50.0,46.0,64.0,71.0,43.0,58.0,66.0,71.0,61.0,56.0,59.0,74.0,62.0,32.0,69.0,51.0,59.0,44.0,55.0,67.0,49.0,77.0,77.0,58.0,59.0,53.0,59.0,65.0,30.0,57.0,75.0,66.0,51.0,76.0,48.0,43.0,52.0,64.0,62.0,58.0,75.0,45.0,55.0,62.0,55.0,55.0,57.0,57.0,,,,70.0,70.0,52.0,52.0,58.0,58.0,77.0,77.0,43.0,43.0,76.0,76.0,43.0,43.0,65.0,65.0,74.0,74.0,57.0,57.0,61.0,61.0,37.0,37.0,73.0,73.0,59.0,59.0,73.0,73.0,54.0,54.0,79.0,79.0,32.0,32.0,70.0,70.0,51.0,51.0,54.0,54.0,83.0,83.0,,,,,,,42.0,42.0,76.0,76.0,,,,74.0,74.0,43.0,43.0,,,,,,,,,,82.0,82.0,56.0,56.0,72.0,72.0,48.0,48.0,,,,,,,,,,52.0,52.0,,,,,,,40.0,40.0,63.0,63.0,68.0,71.0,62.0,74.0,58.0,45.0,45.0,63.0,52.0,44.0,39.0,60.0,50.0,49.0,52.0,55.0,62.0,39.0,64.0,54.0,64.0,48.0,61.0,64.0,63.0,53.0,55.0,55.0,56.0,69.0,76.0,60.0,70.0,50.0,58.0,75.0,52.0,62.0,89.0,64.0,66.0,58.0,,,,,,,,,,,
p3/preprocess/Ovarian_Cancer/clinical_data/GSE146553.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ ,GSM4392150,GSM4392151,GSM4392152,GSM4392153,GSM4392154,GSM4392155,GSM4392156,GSM4392157,GSM4392158,GSM4392159,GSM4392160,GSM4392161,GSM4392162,GSM4392163,GSM4392164,GSM4392165,GSM4392166,GSM4392167,GSM4392168,GSM4392169,GSM4392170,GSM4392171,GSM4392172,GSM4392173,GSM4392174,GSM4392175,GSM4392176,GSM4392177,GSM4392178,GSM4392179,GSM4392180,GSM4392181,GSM4392182,GSM4392183,GSM4392184,GSM4392185,GSM4392186,GSM4392187,GSM4392188,GSM4392189,GSM4392190,GSM4392191,GSM4392192,GSM4392193,GSM4392194,GSM4392195,GSM4392196,GSM4392197,GSM4392198,GSM4392199,GSM4392200,GSM4392201,GSM4392202,GSM4392203,GSM4392204
2
+ Ovarian_Cancer,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,,,,,,,,,,,,
3
+ Age,,,,46.0,80.0,77.0,73.0,89.0,81.0,49.0,54.0,46.0,67.0,62.0,66.0,78.0,48.0,52.0,65.0,58.0,70.0,73.0,74.0,51.0,28.0,71.0,82.0,51.0,40.0,42.0,68.0,73.0,65.0,75.0,59.0,73.0,67.0,75.0,69.0,26.0,84.0,85.0,55.0,,,,,,,,,,,,
p3/preprocess/Ovarian_Cancer/clinical_data/GSE146964.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ ,GSM4411520,GSM4411521,GSM4411522,GSM4411523,GSM4411524,GSM4411525,GSM4411526,GSM4411527,GSM4411528,GSM4411529,GSM4411530,GSM4411531,GSM4411532,GSM4411533,GSM4411534,GSM4411535,GSM4411536,GSM4411537,GSM4411538,GSM4411539,GSM4411540,GSM4411541,GSM4411542,GSM4411543,GSM4411544,GSM4411545,GSM4411546,GSM4411547,GSM4411548,GSM4411549,GSM4411550,GSM4411551,GSM4411552,GSM4411553,GSM4411554,GSM4411555,GSM4411556,GSM4411557
2
+ Ovarian_Cancer,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
3
+ Gender,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
p3/preprocess/Ovarian_Cancer/clinical_data/GSE201525.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM6061492,GSM6061493,GSM6061494,GSM6061495,GSM6061496,GSM6061497,GSM6061498,GSM6061499,GSM6061500,GSM6061501,GSM6061502,GSM6061503,GSM6061504,GSM6061505,GSM6061506,GSM6061507,GSM6061508,GSM6061509,GSM6061510,GSM6061511,GSM6061512,GSM6061513,GSM6061514,GSM6061515
2
+ Ovarian_Cancer,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0